|
Q. Chai
, R. Loxton
, K. L. Teo
and C. Yang
, A unified parameter identification method for nonlinear time delay systems, Journal of Industrial and Management Optimization, 9 (2013)
, 471-486.
doi: 10.3934/jimo.2013.9.471.
|
|
T. Chen
and C. Xu
, Computational optimal control of the Saint-Venant PDE model using the time-scaling technique, Asia-Pacific Journal of Chemical Engineering, 11 (2016)
, 70-80.
doi: 10.1002/apj.1944.
|
|
J. Du
, I. M. Navon
, J. Zhu
, F. Fang
and A. K. Alekseev
, Reduced order modeling based on POD of a parabolized Navier-Stokes equations model Ⅱ: trust region POD 4DVAR data assimilation, Comput. Math. Appl., 65 (2013)
, 380-394.
doi: 10.1016/j.camwa.2012.06.001.
|
|
D. M. Dunlavy, T. G. Kolda and E. Acar, Poblano v1. 0: A Matlab Toolbox for Gradient-Based Optimization, SANDIA Report, 2010.
doi: 10.2172/989350.
|
|
H. W. Engl
, Discrepancy principles for Tikhonov regularization of ill-posed problems leading to optimal convergence rates, J. Optim. Theory Appl., 52 (1987)
, 209-215.
doi: 10.1007/BF00941281.
|
|
C. Farhat
, R. Tezaur
and R. Djellouli
, On the solution of three-dimensional inverse obstacle acoustic scattering problems by a regularized Newton method, Inverse Problems, 18 (2002)
, 1229-1246.
doi: 10.1088/0266-5611/18/5/302.
|
|
R. Giering, Tangent linear and adjoint biogeochemical models, in Inverse Methods in Global Biogeochemical Cycles (eds. P. Kasibhatla, M. Heimann, P. Rayner, N. Mahowald, R. G. Prinn and D. E. Hartley), American Geophysical Union: Washington DC, 2000, 33-47.
|
|
P. E. Gill, W. Murray and M. H. Wright,
Practical Optimization, Academic Press, 1981.
|
|
M. Gunzburger
, Adjoint equation-based methods for control problems in incompressible, viscous flows, Flow Turbulence Combust., 65 (2000)
, 249-272.
doi: 10.1023/A:1011455900396.
|
|
P. C. Hansen,
Rank-Deficient and Discrete Ill-posed Problems, Practical optimization, SIAM, 1998.
doi: 10.1137/1.9780898719697.
|
|
M. J. Hossen
, I. M. Navon
and D. N. Daescu
, Effect of random perturbations on adaptive observation techniques, International Journal For Numerical Methods in Fluids, 69 (2012)
, 110-123.
doi: 10.1002/fld.2545.
|
|
S. X. Huang
, W. Han
and R. S. Wu
, Theoretical analysis and numerical experiments of variational assimilation for one-dimensional ocean temperature model with techniques in inverse problems, Science in China D, 47 (2004)
, 630-638.
|
|
D. Krawczyk-stando
and M. Rudnicki
, Regularization parameter selection in discrete ill-posed problems{The use of the U-curve, Int. J. Appl. Math. Comput. Sci., 17 (2007)
, 157-164.
doi: 10.2478/v10006-007-0014-3.
|
|
Q. Lin
, R. Loxton
, C. Xu
and K. L. Teo
, Parameter estimation for nonlinear time-delay systems with noisy output measurements, Automatica, 60 (2015)
, 48-56.
doi: 10.1016/j.automatica.2015.06.028.
|
|
W. J. Liu, G. Li and L. H. Hong, General decay and blow-up of solutions for a system of viscoelastic equations of Kirchhoff type with strong damping, Journal of Function Spaces, 2 (2014), article ID 284809, 21pp.
doi: 10.1155/2014/284809.
|
|
R. Loxton
, K. L. Teo
and V. Rehbock
, An optimization approach to state-delay identification, IEEE Transactions on Automatic Control, 55 (2010)
, 2113-2119.
doi: 10.1109/TAC.2010.2050710.
|
|
B. Malengier
and R. V. Keer
, Parameter estimation in convection dominated nonlinear convection-diffusion problems by the relaxation method and the adjoint equation, Journal of Computational and Applied Mathematics, 215 (2008)
, 477-483.
doi: 10.1016/j.cam.2006.03.050.
|
|
I. M. Navon
, Practical and theoretical aspects of adjoint parameter estimation and identifiability in meteorology and oceanography, Dynam. Atmos. Oceans, 27 (1998)
, 55-79.
doi: 10.1016/S0377-0265(97)00032-8.
|
|
I. M. Navon
and D. M. Legler
, Conjugate-gradient methods for large-scale minimization in meteorology, Monthly Weather Review, 115 (1987)
, 1479-1502.
doi: 10.1175/1520-0493(1987)115<1479:CGMFLS>2.0.CO;2.
|
|
I. M. Navon
, X. Zou
, J. Derber
and J. Sela
, Variational data assimilation with an adiabatic version of the nmc spectral model, Monthly Weather Review, 120 (1992)
, 1433-1446.
doi: 10.1175/1520-0493(1992)120<1433:VDAWAA>2.0.CO;2.
|
|
T. Nieminen
, J. Kangas
and L. Kettunen
, Use of Tikhonov regularization to improve the accuracy of position estimates in inertial navigation, International Journal of Navigation and Observation, 2011 (2011)
, 1-10.
doi: 10.1155/2011/450269.
|
|
J. Nocedal and S. J. Wright,
Numerical Optimization, Springer, 1999.
doi: 10.1007/b98874.
|
|
D. W. Peaceman
and H. H. Rachford Jr.
, The numerical solution of parabolic and elliptic differential equations, J. Soc. Ind. Appl. Math., 3 (1955)
, 28-41.
doi: 10.1137/0103003.
|
|
B. Protas
, T. R. Bewley
and G. Hagen
, A computational framework for the regularization of adjoint analysis in multiscale PDE systems, Journal of Computational Physics, 195 (2004)
, 49-89.
doi: 10.1016/j.jcp.2003.08.031.
|
|
R. B. Storch
, L. C. G. Pimentel
and H. R. B. Orlande
, Identification of atmospheric boundary layer parameters by inverse problem, Atmospheric Environment, 41 (2007)
, 1417-1425.
doi: 10.1016/j.atmosenv.2006.10.014.
|
|
Y. P. Wang
, I. M. Navon
, X. Y. Wang
and Y. Cheng
, 2D Burgers equation with large Reynolds number using POD/DEIM and calibration, International Journal For Numerical Methods in Fluids, 82 (2016)
, 909-931.
doi: 10.1002/fld.4249.
|
|
Y. P. Wang
and S. L. Tao
, Application of regularization technique to variational adjoint method: A case for nonlinear convection-diffusion problem, Applied Mathematics and Computation, 218 (2011)
, 4475-4482.
doi: 10.1016/j.amc.2011.10.028.
|
|
Y. W. Wen
and A. M. Yip
, Adaptive Parameter Selection for Total Variation Image Deconvolution, Numer. Math. Theor. Meth. Appl., 2 (2009)
, 427-438.
|
|
J. C.-F. Wong
and J.-L. Xie
, Inverse determination of a heat source from natural convection in a porous cavity, Computers and Fluids, 52 (2011)
, 1-14.
doi: 10.1016/j.compfluid.2011.07.013.
|
|
Y. Zhu
and I. M. Navon
, Impact of parameter estimation on the performance of the FSU global spectral model using its full-physics adjoint, Monthly Weather Review, 127 (1999)
, 1497-1517.
doi: 10.1175/1520-0493(1999)127<1497:IOPEOT>2.0.CO;2.
|
|
X. Zou
, I. M. Navon
and F. X. LeDimet
, An optimal nudging data assimilation scheme using parameter estimation, Quarterly Journal of the Royal Meteorological Society, 118 (1992)
, 1163-1186.
doi: 10.1002/qj.49711850808.
|