[1]
|
X. J. Cai, D. R. Han and X. M. Yuan, The direct extension of ADMM for three-block separable convex minimization models is convergent when one function is strongly convex, Comput. Optim. Appl., 66 (2017), 39-73.
doi: 10.1007/s10589-016-9860-y.
|
[2]
|
A. Chambolle, An algorithm for total variation minimization and applications, J. Math. Imaging Vis., 20 (2004), 89-97.
doi: 10.1023/B:JMIV.0000011321.19549.88.
|
[3]
|
R. H. Chan, M. Tao and X. M. Yuan, Linearized alternating direction method of multipliers for constrained linear least-squares problem, E. Asia J. Appl. Math., 2 (2012), 326-341.
doi: 10.4208/eajam.270812.161112a.
|
[4]
|
C. H. Chen, B. S. He, Y. Y. Ye and X. M. Yuan, The direct extension of ADMM for multi-block convex minimization problems is not necessarily convergent, Math. Program., 155 (2016), 57-79.
doi: 10.1007/s10107-014-0826-5.
|
[5]
|
W. Deng, M. J. Lai, Z. M. Peng and W. T. Yin, Parallel multi-block ADMM with o(1/t) convergence, J. Sci. Comput., 71 (2017), 712-736.
doi: 10.1007/s10915-016-0318-2.
|
[6]
|
D. Gabay and B. Mercier, A dual algorithm for the solution of nonlinear variational problems via finite element approximation, Comput. Math. Appl., 2 (1976), 17-40.
doi: 10.1016/0898-1221(76)90003-1.
|
[7]
|
R. Glowinski and A. Marroco, Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problémes de Dirichlet non linéaires, ESAIM: Mathematical Modelling and Numerical Analysis-Modélisation Mathématique et Analyse Numérique, 9 (1975), 41-76.
|
[8]
|
T. Goldstein and S. Osher, The split Bregman method for $L_1$-regularized problems, SIAM J. Imaging Sci., 2 (2009), 323-343.
doi: 10.1137/080725891.
|
[9]
|
D. R. Han, H. J. He and L. L. Xu, A proximal parallel splitting method for minimizing sum of convex functions with linear constraints, J Comput. Appl. Math., 256 (2014), 36-51.
doi: 10.1016/j.cam.2013.07.010.
|
[10]
|
D. R. Han and X. M. Yuan, A note on the alternating direction method of multipliers, J. Optim. Theory Appl., 155 (2012), 227-238.
doi: 10.1007/s10957-012-0003-z.
|
[11]
|
D. R. Han, X. M. Yuan and W. X. Zhang, An augmented lagrangian based parallel splitting method for separable convex minimization with applications to image processing, Math. Comput., 83 (2014), 2263-2291.
doi: 10.1090/S0025-5718-2014-02829-9.
|
[12]
|
P. T. Harker and J. S. Pang, A damped-newton method for the linear complementarity problem, Lect. Appl. Math., 26 (1990), 265-284.
|
[13]
|
B. S. He, L. S. Hou and X. M. Yuan, On full jacobian decompositon of the augmented lagrangian method for separable convex programming, SIAM J. Optim., 25 (2015), 2274-2312.
doi: 10.1137/130922793.
|
[14]
|
B. S. He, M. Tao and X. M. Yuan, Alternating direction method with gaussian back substitution for separable convex programming, SIAM J. Optim., 22 (2012), 313-340.
doi: 10.1137/110822347.
|
[15]
|
B. S. He, M. Tao and X. M. Yuan, Convergence rate and iteration complexity on the alternating direction method of multipliers with a substitution procedure for separable convex programming,
Math. Oper. Res. , (2017).
doi: 10.1287/moor. 2016. 0822.
|
[16]
|
B. S. He, M. Tao and X. M. Yuan, A splitting method for separable convex programming, IMA J. Numer. Anal., 35 (2015), 394-426.
doi: 10.1093/imanum/drt060.
|
[17]
|
B. S. He, M. H. Xu and X. M. Yuan, Solving large-scale least squares covariance matrix problems by alternating direction methods, SIAM J. Matrix Anal. A., 32 (2011), 136-152.
doi: 10.1137/090768813.
|
[18]
|
B. S. He and X. M. Yuan, Block-wise alternating direction method of multipliers for multiple-block convex programming and beyond, SMAI J Comput. Math., 1 (2015), 145-174.
doi: 10.5802/smai-jcm.6.
|
[19]
|
H. J. He, D. R. Han and Z. B. Li, Some projection methods with the BB step sizes for variational inequalities, J. Comput. Appl. Math., 236 (2012), 2590-2604.
doi: 10.1016/j.cam.2011.12.017.
|
[20]
|
M. Y. Hong and Z. Q. Luo, On the linear convergence of the alternating direction method of multipliers, Math. Program., 162 (2017), 165-199.
doi: 10.1007/s10107-016-1034-2.
|
[21]
|
M. Li, D. F. Sun and K. C. Toh, A convergent 3-block semi-proximal ADMM for convex minimization problems with one strongly convex block Asia Pac. J. Oper. Res. , 32 (2015), 1550024, 19pp.
doi: 10.1142/S0217595915500244.
|
[22]
|
T. Y. Lin, S. Q. Ma and S. Z. Zhang, On the sublinear convergence rate of multi-block ADMM, J. Oper. Res. Soc. China, 3 (2015), 251-274.
doi: 10.1007/s40305-015-0092-0.
|
[23]
|
Z. C. Lin, R. S. Liu and Z. X. Su, Linearized alternating direction method with adaptive penalty for low-rank representation, Adv. Neural. Inform. Pr., (2011), 612-620.
|
[24]
|
S. Q. Ma, Alternating proximal gradient method for convex minimization, J. Sci. Comput., 68 (2016), 546-572.
doi: 10.1007/s10915-015-0150-0.
|
[25]
|
J. Nocedal and S. Wright,
Numerical Optimization, Springer Science & Business Media, 2006.
|
[26]
|
Y. Y. Ouyang, Y. M. Chen, G. H. Lan and E. P. Pasiliao Jr, An accelerated linearized alternating direction method of multipliers, SIAM J. Imaging Sci., 8 (2015), 644-681.
doi: 10.1137/14095697X.
|
[27]
|
X. Ren and Z. C. Lin, Linearized alternating direction method with adaptive penalty and warm starts for fast solving transform invariant low-rank textures, Int. J. Comput. Vis., 104 (2013), 1-14.
doi: 10.1007/s11263-013-0611-6.
|
[28]
|
H. Schaeffer and S. Osher, A low patch-rank interpretation of texture, SIAM J. Imaging Sci., 6 (2013), 226-262.
doi: 10.1137/110854989.
|
[29]
|
D. F. Sun, K. C. Toh and L. Yang, A convergent 3-block semi-proximal alternating direction method of multipliers for conic programming with 4-type of constraints, SIAM J. Optim., 25 (2015), 882-915.
doi: 10.1137/140964357.
|
[30]
|
Y. L. Wang, J. F. Yang, W. T. Yin and Y. Zhang, A new alternating minimization algorithm for total variation image reconstruction, SIAM J. Imaging Sci., 1 (2008), 248-272.
doi: 10.1137/080724265.
|