Uncertainty theory is a branch of axiomatic mathematics that deals with human uncertainty. Based on uncertainty theory, this paper discusses linear quadratic (LQ) optimal control with process state inequality constraints for discrete-time uncertain systems, where the weighting matrices in the cost function are assumed to be indefinite. By means of the maximum principle with mixed inequality constraints, we present a necessary condition for the existence of optimal state feedback control that involves a constrained difference equation. Moreover, the existence of a solution to the constrained difference equation is equivalent to the solvability of the indefinite LQ problem. Furthermore, the well-posedness of the indefinite LQ problem is proved. Finally, an example is provided to demonstrate the effectiveness of our theoretical results.
Citation: |
[1] | M. Athans, The matrix minimum principle, Information and Control, 11 (1967), 592-606. doi: 10.1016/S0019-9958(67)90803-0. |
[2] | K. Bahlali, B. Djehiche and B. Mezerdi, On the stochastic maximum principle in optimal control of degenerate diffusions with Lipschitz coefficients, Applied Mathematics and Optimization, 56 (2007), 364-378. doi: 10.1007/s00245-007-9017-6. |
[3] | A. Bensoussan, S. P. Sethi, R. G. Vickson and N. Derzko, Stochastic production planning with production constraints: A summary, SIAM Journal on Control and Optimization, 22 (1984), 920-935. doi: 10.1137/0322060. |
[4] | D. P. Bertsekas, Dynamic Programming and Stochastic Control, Mathematics in Science and Engineering, 125. Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1976. |
[5] | S. P. Chen, X. J. Li and X. Y. Zhou, Stochastic linear quadratic regulators with indefinite control weight costs, SIAM Journal on Control and Optimization, 36 (1998), 1685-1702. doi: 10.1137/S0363012996310478. |
[6] | X. Chen, Y. Liu and D. A. Ralescu, Uncertain stock model with periodic dividends, Fuzzy Optimization and Decision Making, 12 (2013), 111-123. doi: 10.1007/s10700-012-9141-x. |
[7] | Y. Gao, Uncertain models for single facility location problems on networks, Applied Mathematical Modelling, 36 (2012), 2592-2599. doi: 10.1016/j.apm.2011.09.042. |
[8] | M. R. Hestenes, Calculus of Variations and Optimal Control Theory Wiley, New York, 1966. |
[9] | Y. Hu and X. Y. Zhou, Constrained stochastic LQ control with random coefficients, and application to portfolio selection, SIAM Journal on Control and Optimization, 44 (2005), 444-466. doi: 10.1137/S0363012904441969. |
[10] | D. Kahneman and A. Tversky, Prospect theory: an analysis of decision under risk, Econometrica, 47 (1979), 263-292. |
[11] | X. Li and X. Y. Zhou, Indefinite stochastic LQ controls with Markovian jumps in a finite time horizon, Communications on Information and Systems, 2 (2002), 265-282. doi: 10.4310/CIS.2002.v2.n3.a4. |
[12] | B. Liu, Uncertainty Theory 2nd edition, Springer-Verlag, Berlin, 2004. doi: 10.1007/978-3-540-39987-2. |
[13] | B. Liu, Uncertainty Theory: A Branch of Mathematics for Modeling Human Uncertainty Springer-Verlag, Heidelberg, 2015. doi: 10.1007/978-3-662-44354-5. |
[14] | B. Liu, Some research problems in uncertainty theory, Journal of Uncertain Systems, 3 (2009), 3-10. |
[15] | X. Liu, Y. Li and W. Zhang, Stochastic linear quadratic optimal control with constraint for discrete-time systems, Applied Mathematics and Computation, 228 (2014), 264-270. doi: 10.1016/j.amc.2013.09.036. |
[16] | B. Liu and K. Yao, Uncertain multilevel programming: Algorithm and applications, Computers and Industrial Engineering, 89 (2014), 235-240. doi: 10.1016/j.cie.2014.09.029. |
[17] | R. Penrose, A generalized inverse of matrices, Mathematical Proceedings of the Cambridge Philosophical Society, 51 (1955), 406-413. doi: 10.1017/S0305004100030401. |
[18] | L. Sheng and Y. Zhu, Optimistic value model of uncertain optimal control, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 21 (2013), 75-87. doi: 10.1142/S0218488513400060. |
[19] | Y. Shu and Y. Zhu, Stability and optimal control for uncertain continuous-time singular systems, European Journal of Control, 34 (2017), 16-23. doi: 10.1016/j.ejcon.2016.12.003. |
[20] | V. K. Socgnia and O. Menoukeu-Pamen, An infinite horizon stochastic maximum principle for discounted control problem with Lipschitz coefficients, Journal of Mathematical Analysis and Applications, 422 (2015), 684-711. doi: 10.1016/j.jmaa.2014.09.010. |
[21] | Z. Wang, J. Guo, M. Zheng and Y. Yang, A new approach for uncertain multiobjective programming problem based on $\mathcal{P}_E$ principle, Journal of Industrial and Management Optimization, 11 (2015), 13-26. doi: 10.3934/jimo.2015.11.13. |
[22] | W. M. Wonham, On a matrix Riccati equation of stochastic control, SIAM Journal on Control and Optimization, 6 (1968), 681-697. doi: 10.1137/0306044. |
[23] | H. Yan, Y. Sun and Y. Zhu, A linear-quadratic control problem of uncertain discrete-time switched systems, Journal of Industrial and Management Optimization, 13 (2017), 267-282. doi: 10.3934/jimo.2016016. |
[24] | J. Yong and X. Y. Zhou, Stochastic Controls: Hamiltonian Systems and HJB Equations Springer, New York, 1999. doi: 10.1007/978-1-4612-1466-3. |
[25] | W. Zhang, H. Zhang and B. S. Chen, Generalized Lyapunov equation approach to state-dependent stochastic stabilization/detectability criterion, IEEE Transactions on Automatic Control, 53 (2008), 1630-1642. doi: 10.1109/TAC.2008.929368. |
[26] | W. Zhang and B. S. Chen, On stabilizability and exact observability of stochastic systems with their applications, Automatica, 40 (2004), 87-94. doi: 10.1016/j.automatica.2003.07.002. |
[27] | W. Zhang and G. Li, Discrete-time indefinite stochastic linear quadratic optimal control with second moment constraints Mathematical Problems in Engineering 2014 (2014), Art. ID 278142, 9 pp. doi: 10.1155/2014/278142. |
[28] | X. Y. Zhou and D. Li, Continuous-time mean-variance portfolio selection: A stochastic LQ framework, Applied Mathematics and Optimization, 42 (2000), 19-33. doi: 10.1007/s002450010003. |
[29] | Y. Zhu, Uncertain optimal control with application to a portfolio selection model, Cybernetics and Systems: An International Journal, 41 (2010), 535-547. doi: 10.1080/01969722.2010.511552. |
[30] | Y. Zhu, Functions of uncertain variables and uncertain programming, Journal of Uncertain Systems, 6 (2012), 278-288. |