• Previous Article
    Analysis of the Newsboy Problem subject to price dependent demand and multiple discounts
  • JIMO Home
  • This Issue
  • Next Article
    On optimality conditions and duality for non-differentiable interval-valued programming problems with the generalized (F, ρ)-convexity
July  2018, 14(3): 913-930. doi: 10.3934/jimo.2017082

Indefinite LQ optimal control with process state inequality constraints for discrete-time uncertain systems

1. 

School of Mathematics and Statistics, Xinyang Normal University, Xinyang, Henan 464000, China

2. 

School of Science, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China

* Corresponding author: ygzhu@njust.edu.cn

Received  February 2016 Revised  August 2017 Published  September 2017

Fund Project: This work is supported by the National Natural Science Foundation of China (No.61673011), the Nanhu Scholars Program for Young Scholars of XYNU and the Key Scientific Research Project for Colleges and Universities of Henan Province (No.17A120013).

Uncertainty theory is a branch of axiomatic mathematics that deals with human uncertainty. Based on uncertainty theory, this paper discusses linear quadratic (LQ) optimal control with process state inequality constraints for discrete-time uncertain systems, where the weighting matrices in the cost function are assumed to be indefinite. By means of the maximum principle with mixed inequality constraints, we present a necessary condition for the existence of optimal state feedback control that involves a constrained difference equation. Moreover, the existence of a solution to the constrained difference equation is equivalent to the solvability of the indefinite LQ problem. Furthermore, the well-posedness of the indefinite LQ problem is proved. Finally, an example is provided to demonstrate the effectiveness of our theoretical results.

Citation: Yuefen Chen, Yuanguo Zhu. Indefinite LQ optimal control with process state inequality constraints for discrete-time uncertain systems. Journal of Industrial & Management Optimization, 2018, 14 (3) : 913-930. doi: 10.3934/jimo.2017082
References:
[1]

M. Athans, The matrix minimum principle, Information and Control, 11 (1967), 592-606.  doi: 10.1016/S0019-9958(67)90803-0.  Google Scholar

[2]

K. BahlaliB. Djehiche and B. Mezerdi, On the stochastic maximum principle in optimal control of degenerate diffusions with Lipschitz coefficients, Applied Mathematics and Optimization, 56 (2007), 364-378.  doi: 10.1007/s00245-007-9017-6.  Google Scholar

[3]

A. BensoussanS. P. SethiR. G. Vickson and N. Derzko, Stochastic production planning with production constraints: A summary, SIAM Journal on Control and Optimization, 22 (1984), 920-935.  doi: 10.1137/0322060.  Google Scholar

[4]

D. P. Bertsekas, Dynamic Programming and Stochastic Control, Mathematics in Science and Engineering, 125. Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1976.  Google Scholar

[5]

S. P. ChenX. J. Li and X. Y. Zhou, Stochastic linear quadratic regulators with indefinite control weight costs, SIAM Journal on Control and Optimization, 36 (1998), 1685-1702.  doi: 10.1137/S0363012996310478.  Google Scholar

[6]

X. ChenY. Liu and D. A. Ralescu, Uncertain stock model with periodic dividends, Fuzzy Optimization and Decision Making, 12 (2013), 111-123.  doi: 10.1007/s10700-012-9141-x.  Google Scholar

[7]

Y. Gao, Uncertain models for single facility location problems on networks, Applied Mathematical Modelling, 36 (2012), 2592-2599.  doi: 10.1016/j.apm.2011.09.042.  Google Scholar

[8]

M. R. Hestenes, Calculus of Variations and Optimal Control Theory Wiley, New York, 1966.  Google Scholar

[9]

Y. Hu and X. Y. Zhou, Constrained stochastic LQ control with random coefficients, and application to portfolio selection, SIAM Journal on Control and Optimization, 44 (2005), 444-466.  doi: 10.1137/S0363012904441969.  Google Scholar

[10]

D. Kahneman and A. Tversky, Prospect theory: an analysis of decision under risk, Econometrica, 47 (1979), 263-292.   Google Scholar

[11]

X. Li and X. Y. Zhou, Indefinite stochastic LQ controls with Markovian jumps in a finite time horizon, Communications on Information and Systems, 2 (2002), 265-282.  doi: 10.4310/CIS.2002.v2.n3.a4.  Google Scholar

[12]

B. Liu, Uncertainty Theory 2nd edition, Springer-Verlag, Berlin, 2004. doi: 10.1007/978-3-540-39987-2.  Google Scholar

[13]

B. Liu, Uncertainty Theory: A Branch of Mathematics for Modeling Human Uncertainty Springer-Verlag, Heidelberg, 2015. doi: 10.1007/978-3-662-44354-5.  Google Scholar

[14]

B. Liu, Some research problems in uncertainty theory, Journal of Uncertain Systems, 3 (2009), 3-10.   Google Scholar

[15]

X. LiuY. Li and W. Zhang, Stochastic linear quadratic optimal control with constraint for discrete-time systems, Applied Mathematics and Computation, 228 (2014), 264-270.  doi: 10.1016/j.amc.2013.09.036.  Google Scholar

[16]

B. Liu and K. Yao, Uncertain multilevel programming: Algorithm and applications, Computers and Industrial Engineering, 89 (2014), 235-240.  doi: 10.1016/j.cie.2014.09.029.  Google Scholar

[17]

R. Penrose, A generalized inverse of matrices, Mathematical Proceedings of the Cambridge Philosophical Society, 51 (1955), 406-413.  doi: 10.1017/S0305004100030401.  Google Scholar

[18]

L. Sheng and Y. Zhu, Optimistic value model of uncertain optimal control, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 21 (2013), 75-87.  doi: 10.1142/S0218488513400060.  Google Scholar

[19]

Y. Shu and Y. Zhu, Stability and optimal control for uncertain continuous-time singular systems, European Journal of Control, 34 (2017), 16-23.  doi: 10.1016/j.ejcon.2016.12.003.  Google Scholar

[20]

V. K. Socgnia and O. Menoukeu-Pamen, An infinite horizon stochastic maximum principle for discounted control problem with Lipschitz coefficients, Journal of Mathematical Analysis and Applications, 422 (2015), 684-711.  doi: 10.1016/j.jmaa.2014.09.010.  Google Scholar

[21]

Z. WangJ. GuoM. Zheng and Y. Yang, A new approach for uncertain multiobjective programming problem based on $\mathcal{P}_E$ principle, Journal of Industrial and Management Optimization, 11 (2015), 13-26.  doi: 10.3934/jimo.2015.11.13.  Google Scholar

[22]

W. M. Wonham, On a matrix Riccati equation of stochastic control, SIAM Journal on Control and Optimization, 6 (1968), 681-697.  doi: 10.1137/0306044.  Google Scholar

[23]

H. YanY. Sun and Y. Zhu, A linear-quadratic control problem of uncertain discrete-time switched systems, Journal of Industrial and Management Optimization, 13 (2017), 267-282.  doi: 10.3934/jimo.2016016.  Google Scholar

[24]

J. Yong and X. Y. Zhou, Stochastic Controls: Hamiltonian Systems and HJB Equations Springer, New York, 1999. doi: 10.1007/978-1-4612-1466-3.  Google Scholar

[25]

W. ZhangH. Zhang and B. S. Chen, Generalized Lyapunov equation approach to state-dependent stochastic stabilization/detectability criterion, IEEE Transactions on Automatic Control, 53 (2008), 1630-1642.  doi: 10.1109/TAC.2008.929368.  Google Scholar

[26]

W. Zhang and B. S. Chen, On stabilizability and exact observability of stochastic systems with their applications, Automatica, 40 (2004), 87-94.  doi: 10.1016/j.automatica.2003.07.002.  Google Scholar

[27]

W. Zhang and G. Li, Discrete-time indefinite stochastic linear quadratic optimal control with second moment constraints Mathematical Problems in Engineering 2014 (2014), Art. ID 278142, 9 pp. doi: 10.1155/2014/278142.  Google Scholar

[28]

X. Y. Zhou and D. Li, Continuous-time mean-variance portfolio selection: A stochastic LQ framework, Applied Mathematics and Optimization, 42 (2000), 19-33.  doi: 10.1007/s002450010003.  Google Scholar

[29]

Y. Zhu, Uncertain optimal control with application to a portfolio selection model, Cybernetics and Systems: An International Journal, 41 (2010), 535-547.  doi: 10.1080/01969722.2010.511552.  Google Scholar

[30]

Y. Zhu, Functions of uncertain variables and uncertain programming, Journal of Uncertain Systems, 6 (2012), 278-288.   Google Scholar

show all references

References:
[1]

M. Athans, The matrix minimum principle, Information and Control, 11 (1967), 592-606.  doi: 10.1016/S0019-9958(67)90803-0.  Google Scholar

[2]

K. BahlaliB. Djehiche and B. Mezerdi, On the stochastic maximum principle in optimal control of degenerate diffusions with Lipschitz coefficients, Applied Mathematics and Optimization, 56 (2007), 364-378.  doi: 10.1007/s00245-007-9017-6.  Google Scholar

[3]

A. BensoussanS. P. SethiR. G. Vickson and N. Derzko, Stochastic production planning with production constraints: A summary, SIAM Journal on Control and Optimization, 22 (1984), 920-935.  doi: 10.1137/0322060.  Google Scholar

[4]

D. P. Bertsekas, Dynamic Programming and Stochastic Control, Mathematics in Science and Engineering, 125. Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1976.  Google Scholar

[5]

S. P. ChenX. J. Li and X. Y. Zhou, Stochastic linear quadratic regulators with indefinite control weight costs, SIAM Journal on Control and Optimization, 36 (1998), 1685-1702.  doi: 10.1137/S0363012996310478.  Google Scholar

[6]

X. ChenY. Liu and D. A. Ralescu, Uncertain stock model with periodic dividends, Fuzzy Optimization and Decision Making, 12 (2013), 111-123.  doi: 10.1007/s10700-012-9141-x.  Google Scholar

[7]

Y. Gao, Uncertain models for single facility location problems on networks, Applied Mathematical Modelling, 36 (2012), 2592-2599.  doi: 10.1016/j.apm.2011.09.042.  Google Scholar

[8]

M. R. Hestenes, Calculus of Variations and Optimal Control Theory Wiley, New York, 1966.  Google Scholar

[9]

Y. Hu and X. Y. Zhou, Constrained stochastic LQ control with random coefficients, and application to portfolio selection, SIAM Journal on Control and Optimization, 44 (2005), 444-466.  doi: 10.1137/S0363012904441969.  Google Scholar

[10]

D. Kahneman and A. Tversky, Prospect theory: an analysis of decision under risk, Econometrica, 47 (1979), 263-292.   Google Scholar

[11]

X. Li and X. Y. Zhou, Indefinite stochastic LQ controls with Markovian jumps in a finite time horizon, Communications on Information and Systems, 2 (2002), 265-282.  doi: 10.4310/CIS.2002.v2.n3.a4.  Google Scholar

[12]

B. Liu, Uncertainty Theory 2nd edition, Springer-Verlag, Berlin, 2004. doi: 10.1007/978-3-540-39987-2.  Google Scholar

[13]

B. Liu, Uncertainty Theory: A Branch of Mathematics for Modeling Human Uncertainty Springer-Verlag, Heidelberg, 2015. doi: 10.1007/978-3-662-44354-5.  Google Scholar

[14]

B. Liu, Some research problems in uncertainty theory, Journal of Uncertain Systems, 3 (2009), 3-10.   Google Scholar

[15]

X. LiuY. Li and W. Zhang, Stochastic linear quadratic optimal control with constraint for discrete-time systems, Applied Mathematics and Computation, 228 (2014), 264-270.  doi: 10.1016/j.amc.2013.09.036.  Google Scholar

[16]

B. Liu and K. Yao, Uncertain multilevel programming: Algorithm and applications, Computers and Industrial Engineering, 89 (2014), 235-240.  doi: 10.1016/j.cie.2014.09.029.  Google Scholar

[17]

R. Penrose, A generalized inverse of matrices, Mathematical Proceedings of the Cambridge Philosophical Society, 51 (1955), 406-413.  doi: 10.1017/S0305004100030401.  Google Scholar

[18]

L. Sheng and Y. Zhu, Optimistic value model of uncertain optimal control, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 21 (2013), 75-87.  doi: 10.1142/S0218488513400060.  Google Scholar

[19]

Y. Shu and Y. Zhu, Stability and optimal control for uncertain continuous-time singular systems, European Journal of Control, 34 (2017), 16-23.  doi: 10.1016/j.ejcon.2016.12.003.  Google Scholar

[20]

V. K. Socgnia and O. Menoukeu-Pamen, An infinite horizon stochastic maximum principle for discounted control problem with Lipschitz coefficients, Journal of Mathematical Analysis and Applications, 422 (2015), 684-711.  doi: 10.1016/j.jmaa.2014.09.010.  Google Scholar

[21]

Z. WangJ. GuoM. Zheng and Y. Yang, A new approach for uncertain multiobjective programming problem based on $\mathcal{P}_E$ principle, Journal of Industrial and Management Optimization, 11 (2015), 13-26.  doi: 10.3934/jimo.2015.11.13.  Google Scholar

[22]

W. M. Wonham, On a matrix Riccati equation of stochastic control, SIAM Journal on Control and Optimization, 6 (1968), 681-697.  doi: 10.1137/0306044.  Google Scholar

[23]

H. YanY. Sun and Y. Zhu, A linear-quadratic control problem of uncertain discrete-time switched systems, Journal of Industrial and Management Optimization, 13 (2017), 267-282.  doi: 10.3934/jimo.2016016.  Google Scholar

[24]

J. Yong and X. Y. Zhou, Stochastic Controls: Hamiltonian Systems and HJB Equations Springer, New York, 1999. doi: 10.1007/978-1-4612-1466-3.  Google Scholar

[25]

W. ZhangH. Zhang and B. S. Chen, Generalized Lyapunov equation approach to state-dependent stochastic stabilization/detectability criterion, IEEE Transactions on Automatic Control, 53 (2008), 1630-1642.  doi: 10.1109/TAC.2008.929368.  Google Scholar

[26]

W. Zhang and B. S. Chen, On stabilizability and exact observability of stochastic systems with their applications, Automatica, 40 (2004), 87-94.  doi: 10.1016/j.automatica.2003.07.002.  Google Scholar

[27]

W. Zhang and G. Li, Discrete-time indefinite stochastic linear quadratic optimal control with second moment constraints Mathematical Problems in Engineering 2014 (2014), Art. ID 278142, 9 pp. doi: 10.1155/2014/278142.  Google Scholar

[28]

X. Y. Zhou and D. Li, Continuous-time mean-variance portfolio selection: A stochastic LQ framework, Applied Mathematics and Optimization, 42 (2000), 19-33.  doi: 10.1007/s002450010003.  Google Scholar

[29]

Y. Zhu, Uncertain optimal control with application to a portfolio selection model, Cybernetics and Systems: An International Journal, 41 (2010), 535-547.  doi: 10.1080/01969722.2010.511552.  Google Scholar

[30]

Y. Zhu, Functions of uncertain variables and uncertain programming, Journal of Uncertain Systems, 6 (2012), 278-288.   Google Scholar

[1]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[2]

Veena Goswami, Gopinath Panda. Optimal customer behavior in observable and unobservable discrete-time queues. Journal of Industrial & Management Optimization, 2021, 17 (1) : 299-316. doi: 10.3934/jimo.2019112

[3]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[4]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[5]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[6]

Haixiang Yao, Ping Chen, Miao Zhang, Xun Li. Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020166

[7]

Chongyang Liu, Meijia Han, Zhaohua Gong, Kok Lay Teo. Robust parameter estimation for constrained time-delay systems with inexact measurements. Journal of Industrial & Management Optimization, 2021, 17 (1) : 317-337. doi: 10.3934/jimo.2019113

[8]

Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011

[9]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[10]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[11]

Yuan Tan, Qingyuan Cao, Lan Li, Tianshi Hu, Min Su. A chance-constrained stochastic model predictive control problem with disturbance feedback. Journal of Industrial & Management Optimization, 2021, 17 (1) : 67-79. doi: 10.3934/jimo.2019099

[12]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029

[13]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[14]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[15]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[16]

Reza Lotfi, Zahra Yadegari, Seyed Hossein Hosseini, Amir Hossein Khameneh, Erfan Babaee Tirkolaee, Gerhard-Wilhelm Weber. A robust time-cost-quality-energy-environment trade-off with resource-constrained in project management: A case study for a bridge construction project. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020158

[17]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[18]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[19]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[20]

Xuemei Chen, Julia Dobrosotskaya. Inpainting via sparse recovery with directional constraints. Mathematical Foundations of Computing, 2020, 3 (4) : 229-247. doi: 10.3934/mfc.2020025

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (113)
  • HTML views (891)
  • Cited by (0)

Other articles
by authors

[Back to Top]