• Previous Article
    Solutions for bargaining games with incomplete information: General type space and action space
  • JIMO Home
  • This Issue
  • Next Article
    Indefinite LQ optimal control with process state inequality constraints for discrete-time uncertain systems
July  2018, 14(3): 931-951. doi: 10.3934/jimo.2017083

Analysis of the Newsboy Problem subject to price dependent demand and multiple discounts

1. 

School of business administration, Zhongnan university of economics and law, 182 Nanhu Avenue, East Lake High-tech Development Zone, Wuhan 430073, China

2. 

OASIS -ENIT, University of Tunis El Manar, BP 37, LE BELVEDERE 1002 TUNIS, Tunisia

3. 

LGI, Centrale Supelec, Paris Saclay University, Grande Voie des Vignes, 92295 CHATNAY-MALABRY CEDEX, France

* Corresponding author: Shouyu Ma

Received  March 2016 Revised  August 2017 Published  September 2017

Fund Project: The first author is supported by the China Scholarship Council.

Existing papers on the Newsboy Problem that deal with price dependent demand and multiple discounts often analyze those two problems separately. This paper considers a setting where price dependence and multiple discounts are observed simultaneously, as is the case of the apparel industry. Henceforth, we analyze the optimal order quantity, initial selling price and discount scheme in the News-Vendor Problem context. The term of discount scheme is often used to specify the number of discounts as well as the discount percentages. We present a solution procedure of the problem with general demand distributions and two types of price-dependent demand: additive case and multiplicative case. We provide interesting insights based on a numerical study. An approximation method is proposed which confirms our numerical results.

Citation: Shouyu Ma, Zied Jemai, Evren Sahin, Yves Dallery. Analysis of the Newsboy Problem subject to price dependent demand and multiple discounts. Journal of Industrial & Management Optimization, 2018, 14 (3) : 931-951. doi: 10.3934/jimo.2017083
References:
[1]

F. J. ArcelusS. Kumar and G. Srinivasan, Channel coordination with manufacturer's return policies within a newsvendor framework, 4OR, 9 (2011), 279-297.  doi: 10.1007/s10288-011-0160-1.  Google Scholar

[2]

F. Y. ChenH. Yan and L. Yao, A newsvendor pricing game, IEEE Transactions on Systems, Man, and Cybernetics, 34 (2004), 450-456.  doi: 10.1109/TSMCA.2004.826290.  Google Scholar

[3]

W. ChungS. Talluri and R. Narasimhan, Optimal pricing and inventory strategies with multiple price markdowns over time, European Journal of Operational Research, 243 (2014), 130-141.  doi: 10.1016/j.ejor.2014.11.020.  Google Scholar

[4]

G. Gallego and I. Moon, The distribution free newsboy problem: review and extensions, The Journal of the Operational Research Society, 44 (1993), 825-834.   Google Scholar

[5]

S. Karlin and C. R. Carr, Prices and Optimal Inventory Policy Studies in Applied Probability and Management Science. Stanford University Press, 1962. Google Scholar

[6]

M. Khouja, The newsboy problem under progressive multiple discounts, European Journal of Operational Research, 84 (1995), 458-466.  doi: 10.1016/0377-2217(94)00053-F.  Google Scholar

[7]

M. Khouja, The newsboy problem with progressive retailer discounts and supplier quantity discounts, Decision Sciences, 27 (1996), 589-599.   Google Scholar

[8]

M. Khouja, Optimal ordering, discounting, and pricing in the single-period problem, International Jounal of Production Economics, 65 (2000), 201-216.  doi: 10.1016/S0925-5273(99)00027-4.  Google Scholar

[9]

M. Khouja and A. Mehrez, A multi-product constrained newsboy problem with progressive multiple discounts, Computers and Industrial Engineering, 30 (1996), 95-101.  doi: 10.1016/0360-8352(95)00025-9.  Google Scholar

[10]

A. Lau and H. Lau, The newsboy problem with price-dependent demand distribution, IIE Transactions, 20 (1998), 168-175.  doi: 10.1080/07408178808966166.  Google Scholar

[11]

E. S. Mills, Uncertainty and price theory, the Quarterly Journal of Economics, 73 (1959), 116-130.  doi: 10.2307/1883828.  Google Scholar

[12]

L. H. Polatoglu, Optimal order quantity and pricing decisions in single-period inventory systems, International Journal of Production Economics, 23 (1991), 175-185.  doi: 10.1016/0925-5273(91)90060-7.  Google Scholar

[13]

Y. QinR. WangA.J. VakhariaY. Chen and M.M. H. Seref, The newsvendor problem: Review and directions for future research, European Journal of Operational Research, 213 (2011), 361-374.  doi: 10.1016/j.ejor.2010.11.024.  Google Scholar

[14]

S.A. Raza, A distribution free approach to newsvendor problem with pricing, 4OR, 12 (2014), 335-358.  doi: 10.1007/s10288-013-0249-9.  Google Scholar

[15]

S.S. Sana, Price sensitive demand with random sales price-a newsboy problem, International Journal of Systems Science, 43 (2012), 491-498.  doi: 10.1080/00207721.2010.517856.  Google Scholar

[16]

K.-H. Wang and C.-T. Tung, Construction of a model towards {EOQ} and pricing strategy for gradually obsolescent products, Applied Mathematics and Computation, 217 (2011), 6926-6933.  doi: 10.1016/j.amc.2011.01.100.  Google Scholar

[17]

L. R. Weatherford and P. E. Pfeifer, The economic value of using advance booking of orders, Omega, 22 (1994), 105-111.  doi: 10.1016/0305-0483(94)90011-6.  Google Scholar

[18]

H. Yu and J. Zhai, The distribution-free newsvendor problem with balking and penalties for balking and stockout, Journal of Systems Science and Systems Engineering, 23 (2014), 153-175.  doi: 10.1007/s11518-014-5246-9.  Google Scholar

[19]

Y. ZhangX. Yang and B. Li, Distribution-free solutions to the extended multi-period newsboy problem, Journal of Industrial and Management Optimization, 13 (2017), 633-647.  doi: 10.3934/jimo.2016037.  Google Scholar

show all references

References:
[1]

F. J. ArcelusS. Kumar and G. Srinivasan, Channel coordination with manufacturer's return policies within a newsvendor framework, 4OR, 9 (2011), 279-297.  doi: 10.1007/s10288-011-0160-1.  Google Scholar

[2]

F. Y. ChenH. Yan and L. Yao, A newsvendor pricing game, IEEE Transactions on Systems, Man, and Cybernetics, 34 (2004), 450-456.  doi: 10.1109/TSMCA.2004.826290.  Google Scholar

[3]

W. ChungS. Talluri and R. Narasimhan, Optimal pricing and inventory strategies with multiple price markdowns over time, European Journal of Operational Research, 243 (2014), 130-141.  doi: 10.1016/j.ejor.2014.11.020.  Google Scholar

[4]

G. Gallego and I. Moon, The distribution free newsboy problem: review and extensions, The Journal of the Operational Research Society, 44 (1993), 825-834.   Google Scholar

[5]

S. Karlin and C. R. Carr, Prices and Optimal Inventory Policy Studies in Applied Probability and Management Science. Stanford University Press, 1962. Google Scholar

[6]

M. Khouja, The newsboy problem under progressive multiple discounts, European Journal of Operational Research, 84 (1995), 458-466.  doi: 10.1016/0377-2217(94)00053-F.  Google Scholar

[7]

M. Khouja, The newsboy problem with progressive retailer discounts and supplier quantity discounts, Decision Sciences, 27 (1996), 589-599.   Google Scholar

[8]

M. Khouja, Optimal ordering, discounting, and pricing in the single-period problem, International Jounal of Production Economics, 65 (2000), 201-216.  doi: 10.1016/S0925-5273(99)00027-4.  Google Scholar

[9]

M. Khouja and A. Mehrez, A multi-product constrained newsboy problem with progressive multiple discounts, Computers and Industrial Engineering, 30 (1996), 95-101.  doi: 10.1016/0360-8352(95)00025-9.  Google Scholar

[10]

A. Lau and H. Lau, The newsboy problem with price-dependent demand distribution, IIE Transactions, 20 (1998), 168-175.  doi: 10.1080/07408178808966166.  Google Scholar

[11]

E. S. Mills, Uncertainty and price theory, the Quarterly Journal of Economics, 73 (1959), 116-130.  doi: 10.2307/1883828.  Google Scholar

[12]

L. H. Polatoglu, Optimal order quantity and pricing decisions in single-period inventory systems, International Journal of Production Economics, 23 (1991), 175-185.  doi: 10.1016/0925-5273(91)90060-7.  Google Scholar

[13]

Y. QinR. WangA.J. VakhariaY. Chen and M.M. H. Seref, The newsvendor problem: Review and directions for future research, European Journal of Operational Research, 213 (2011), 361-374.  doi: 10.1016/j.ejor.2010.11.024.  Google Scholar

[14]

S.A. Raza, A distribution free approach to newsvendor problem with pricing, 4OR, 12 (2014), 335-358.  doi: 10.1007/s10288-013-0249-9.  Google Scholar

[15]

S.S. Sana, Price sensitive demand with random sales price-a newsboy problem, International Journal of Systems Science, 43 (2012), 491-498.  doi: 10.1080/00207721.2010.517856.  Google Scholar

[16]

K.-H. Wang and C.-T. Tung, Construction of a model towards {EOQ} and pricing strategy for gradually obsolescent products, Applied Mathematics and Computation, 217 (2011), 6926-6933.  doi: 10.1016/j.amc.2011.01.100.  Google Scholar

[17]

L. R. Weatherford and P. E. Pfeifer, The economic value of using advance booking of orders, Omega, 22 (1994), 105-111.  doi: 10.1016/0305-0483(94)90011-6.  Google Scholar

[18]

H. Yu and J. Zhai, The distribution-free newsvendor problem with balking and penalties for balking and stockout, Journal of Systems Science and Systems Engineering, 23 (2014), 153-175.  doi: 10.1007/s11518-014-5246-9.  Google Scholar

[19]

Y. ZhangX. Yang and B. Li, Distribution-free solutions to the extended multi-period newsboy problem, Journal of Industrial and Management Optimization, 13 (2017), 633-647.  doi: 10.3934/jimo.2016037.  Google Scholar

Figure 1.  sequence of events for a selling season
Figure 2.  Expected profit $E(\pi(Q^{*}))$, as a function of the discount number, for normally distributed demand
Figure 3.  Expected profit $E(\pi(Q^{*}))$, as a function of the intial price
Figure 4.  discount schemes
Figure 5.  The value of ($E(\pi(Q^{*}))-E_\sigma$), as a function of discount number, with normal distribution
Figure 6.  The value of ($E(\pi(Q^{*}))-E_\sigma$), as a function of discount number, with uniform distribution
Figure 7.  Expected profit as function of discount number n
Figure 8.  Discount percentages at $v_0=6$ for different schemes
Figure 9.  Expected profit as function of initial price
Table 1.  Comparison with the work of Khouja(1995, 2000)
parameterprice-demand relation demand distribution discount prices
[6] fixed general known
[8] additive uniform and normal linear
our paper additive and multiplicative general all types
parameterprice-demand relation demand distribution discount prices
[6] fixed general known
[8] additive uniform and normal linear
our paper additive and multiplicative general all types
Table 2.  The optimal order initial price, order quantity and expected profit for different combinations of n, b, $\sigma_0$ for normally distributed demand
test n b $\sigma_0$ $v^*_{0}$ $Q^*$ $E(\pi(Q^*, v_0^*))$
1 4 6 2 10.20 55.8 249.0
2 4 6 4 10.18 55.9 246.9
3 4 6 6 10.24 56.1 245.0
4 4 6 8 10.23 56.9 243.4
5 4 8 2 8.54 50.4 153.3
6 4 8 4 8.58 49.8 151.6
7 4 8 6 8.59 49.6 150.2
8 4 8 8 8.57 50.0 148.6
9 4 10 2 6.60 46.3 95.0
10 4 10 4 6.64 44.5 94.3
11 4 10 6 6.64 44.3 93.6
12 4 10 8 6.61 44.6 92.2
13 5 6 2 11.41 56.6 263.9
14 5 6 4 11.51 56.4 262.0
15 5 6 6 11.47 56.7 260.2
16 5 6 8 11.54 57.4 258.2
17 5 8 2 8.81 51.9 159.8
18 5 8 4 8.71 50.9 158.6
19 5 8 6 8.75 50.8 157.4
20 5 8 8 8.81 51.2 155.8
21 5 10 2 7.09 45.7 100.1
22 5 10 4 7.06 45.0 99.8
23 5 10 6 7.01 45.1 98.8
24 5 10 8 7.09 45.3 97.6
25 6 6 2 11.90 57.6 271.5
26 6 6 4 11.90 57.2 270.0
27 6 6 6 11.88 57.5 268.3
28 6 6 8 12.0 58.2 266.3
29 6 8 2 8.91 52.6 164.5
30 6 8 4 8.91 51.5 163.7
31 6 8 6 8.94 51.6 162.6
32 6 8 8 8.91 52.1 161.0
33 6 10 2 7.16 44.8 103.8
34 6 10 4 7.18 45.7 103.3
35 6 10 6 7.19 45.8 102.3
36 6 10 8 7.18 46.1 100.0
test n b $\sigma_0$ $v^*_{0}$ $Q^*$ $E(\pi(Q^*, v_0^*))$
1 4 6 2 10.20 55.8 249.0
2 4 6 4 10.18 55.9 246.9
3 4 6 6 10.24 56.1 245.0
4 4 6 8 10.23 56.9 243.4
5 4 8 2 8.54 50.4 153.3
6 4 8 4 8.58 49.8 151.6
7 4 8 6 8.59 49.6 150.2
8 4 8 8 8.57 50.0 148.6
9 4 10 2 6.60 46.3 95.0
10 4 10 4 6.64 44.5 94.3
11 4 10 6 6.64 44.3 93.6
12 4 10 8 6.61 44.6 92.2
13 5 6 2 11.41 56.6 263.9
14 5 6 4 11.51 56.4 262.0
15 5 6 6 11.47 56.7 260.2
16 5 6 8 11.54 57.4 258.2
17 5 8 2 8.81 51.9 159.8
18 5 8 4 8.71 50.9 158.6
19 5 8 6 8.75 50.8 157.4
20 5 8 8 8.81 51.2 155.8
21 5 10 2 7.09 45.7 100.1
22 5 10 4 7.06 45.0 99.8
23 5 10 6 7.01 45.1 98.8
24 5 10 8 7.09 45.3 97.6
25 6 6 2 11.90 57.6 271.5
26 6 6 4 11.90 57.2 270.0
27 6 6 6 11.88 57.5 268.3
28 6 6 8 12.0 58.2 266.3
29 6 8 2 8.91 52.6 164.5
30 6 8 4 8.91 51.5 163.7
31 6 8 6 8.94 51.6 162.6
32 6 8 8 8.91 52.1 161.0
33 6 10 2 7.16 44.8 103.8
34 6 10 4 7.18 45.7 103.3
35 6 10 6 7.19 45.8 102.3
36 6 10 8 7.18 46.1 100.0
Table 3.  Optimal epected profit for different discount schemes
scheme coe optimal expected profit
linear 0 158.5
1 -0.03 144.9
2 -0.02 151.1
3 -0.01 155.8
4 0.01 159.1
5 0.02 157.8
6 0.03 153.4
scheme coe optimal expected profit
linear 0 158.5
1 -0.03 144.9
2 -0.02 151.1
3 -0.01 155.8
4 0.01 159.1
5 0.02 157.8
6 0.03 153.4
Table 4.  Expected profit function for uniform and normal distributions
Distribution $U[\mu_0-\sigma_0, \mu_0+\sigma_0]$ $N(\mu_0, \sigma_0)$
Condition for $\epsilon=0$ $\forall j, \sigma_0\leq \frac{\mu_{j}-\mu_{j-1}}{2}$ $\forall j, \sigma_0\leq \frac{\mu_{j}-\mu_{j-1}}{4}$
$E(\pi(Q^*))$ $E_\sigma+E_v$ $E_\sigma+E_v$
$E(\pi(Q^*))$ for linear case equation 4.11 equation 4.11
$E_v$ equation 4.8 equation 4.8
$E_\sigma$ equation 4.9 equation 4.10
Distribution $U[\mu_0-\sigma_0, \mu_0+\sigma_0]$ $N(\mu_0, \sigma_0)$
Condition for $\epsilon=0$ $\forall j, \sigma_0\leq \frac{\mu_{j}-\mu_{j-1}}{2}$ $\forall j, \sigma_0\leq \frac{\mu_{j}-\mu_{j-1}}{4}$
$E(\pi(Q^*))$ $E_\sigma+E_v$ $E_\sigma+E_v$
$E(\pi(Q^*))$ for linear case equation 4.11 equation 4.11
$E_v$ equation 4.8 equation 4.8
$E_\sigma$ equation 4.9 equation 4.10
Table 5.  Expected profit function for uniform and normal distributions
Distribution $U[\mu_0-\sigma_0, \mu_0+\sigma_0]$ $N(\mu_0, \sigma_0)$
Condition that $\epsilon=0$ $\forall j, \sigma_0\leq\frac{\mu_{j}-\mu_{j-1}}{2}$ $\forall j, \sigma_0\leq\frac{\mu_{j}-\mu_{j-1}}{4}$
$E(\pi(Q^*))$ $E_\sigma+E_v$ $E_\sigma+E_v$
Exponential case equation 5.8 equation 5.8
$E_v$ equation 5.5 equation 5.5
$E_\sigma$ equation 5.6 equation 5.7
Distribution $U[\mu_0-\sigma_0, \mu_0+\sigma_0]$ $N(\mu_0, \sigma_0)$
Condition that $\epsilon=0$ $\forall j, \sigma_0\leq\frac{\mu_{j}-\mu_{j-1}}{2}$ $\forall j, \sigma_0\leq\frac{\mu_{j}-\mu_{j-1}}{4}$
$E(\pi(Q^*))$ $E_\sigma+E_v$ $E_\sigma+E_v$
Exponential case equation 5.8 equation 5.8
$E_v$ equation 5.5 equation 5.5
$E_\sigma$ equation 5.6 equation 5.7
[1]

Guiyang Zhu. Optimal pricing and ordering policy for defective items under temporary price reduction with inspection errors and price sensitive demand. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021060

[2]

Gaurav Nagpal, Udayan Chanda, Nitant Upasani. Inventory replenishment policies for two successive generations price-sensitive technology products. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021036

[3]

Qiang Lin, Yang Xiao, Jingju Zheng. Selecting the supply chain financing mode under price-sensitive demand: Confirmed warehouse financing vs. trade credit. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2031-2049. doi: 10.3934/jimo.2020057

[4]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[5]

Fabio Camilli, Serikbolsyn Duisembay, Qing Tang. Approximation of an optimal control problem for the time-fractional Fokker-Planck equation. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021013

[6]

Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021014

[7]

Haripriya Barman, Magfura Pervin, Sankar Kumar Roy, Gerhard-Wilhelm Weber. Back-ordered inventory model with inflation in a cloudy-fuzzy environment. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1913-1941. doi: 10.3934/jimo.2020052

[8]

Caichun Chai, Tiaojun Xiao, Zhangwei Feng. Evolution of revenue preference for competing firms with nonlinear inverse demand. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021071

[9]

Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021035

[10]

Xiaochen Mao, Weijie Ding, Xiangyu Zhou, Song Wang, Xingyong Li. Complexity in time-delay networks of multiple interacting neural groups. Electronic Research Archive, , () : -. doi: 10.3934/era.2021022

[11]

Chong Wang, Xu Chen. Fresh produce price-setting newsvendor with bidirectional option contracts. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021052

[12]

Claudianor O. Alves, Giovany M. Figueiredo, Riccardo Molle. Multiple positive bound state solutions for a critical Choquard equation. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021061

[13]

Kai Cai, Guangyue Han. An optimization approach to the Langberg-Médard multiple unicast conjecture. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021001

[14]

Shoufeng Ji, Jinhuan Tang, Minghe Sun, Rongjuan Luo. Multi-objective optimization for a combined location-routing-inventory system considering carbon-capped differences. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021051

[15]

Ru Li, Guolin Yu. Strict efficiency of a multi-product supply-demand network equilibrium model. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2203-2215. doi: 10.3934/jimo.2020065

[16]

Xue Qiao, Zheng Wang, Haoxun Chen. Joint optimal pricing and inventory management policy and its sensitivity analysis for perishable products: Lost sale case. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021079

[17]

Anastasiia Panchuk, Frank Westerhoff. Speculative behavior and chaotic asset price dynamics: On the emergence of a bandcount accretion bifurcation structure. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021117

[18]

Guanwei Chen, Martin Schechter. Multiple solutions for Schrödinger lattice systems with asymptotically linear terms and perturbed terms. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021124

[19]

Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313

[20]

Tobias Geiger, Daniel Wachsmuth, Gerd Wachsmuth. Optimal control of ODEs with state suprema. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021012

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (296)
  • HTML views (1215)
  • Cited by (2)

Other articles
by authors

[Back to Top]