July  2018, 14(3): 953-966. doi: 10.3934/jimo.2017084

Solutions for bargaining games with incomplete information: General type space and action space

1. 

School of Business Administration, Hunan University, Changsha 410082, China

2. 

Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China

3. 

School of Economics and Management, Northwest University, Xi'an 710127, China

* Corresponding author

Received  March 2016 Revised  September 2016 Published  September 2017

Fund Project: This work has been supported by the National Natural Science Foundation of China under Projects Nos. 71210002 and 71671099. The authors are grateful to the anonymous referees for their constructive comments and suggestions.

A Nash bargaining solution for Bayesian collective choice problem with general type and action spaces is built in this paper. Such solution generalizes the bargaining solution proposed by Myerson who uses finite sets to characterize the type and action spaces. However, in the real economics and industries, types and actions can hardly be characterized by a finite set in some circumstances. Hence our generalization expands the applications of bargaining theory in economic and industrial models.

Citation: Feimin Zhong, Jinxing Xie, Jing Jiao. Solutions for bargaining games with incomplete information: General type space and action space. Journal of Industrial & Management Optimization, 2018, 14 (3) : 953-966. doi: 10.3934/jimo.2017084
References:
[1]

X. Brusset and P. J. Agrell, Intrinsic impediments to category captainship collaboration, Journal of Industrial and Management Optimization, 13 (2017), 113-133.  doi: 10.3934/jimo.2016007.  Google Scholar

[2]

W. S. ChangB. Chen and T. C. Salmon, An investigation of the average bid mechanism for procurement auctions, Management Science, 61 (2015), 1237-1254.  doi: 10.1287/mnsc.2013.1893.  Google Scholar

[3]

J. C. Harsanyi and R. Selten, A generalized Nash solution for two-person bargaining games with incomplete information, Management Science, 18 (1972), 80-106.  doi: 10.1287/mnsc.18.5.80.  Google Scholar

[4]

B. Holmström and R. B. Myerson, Efficient and durable decision rules with incomplete information, Econometrica, 51 (1983), 1799-1819.   Google Scholar

[5]

M. HuangX. QianS. C. Fang and X. Wang, Winner determination for risk aversion buyers in multi-attribute reverse auction, Omega, 59 (2016), 184-200.  doi: 10.1016/j.omega.2015.06.007.  Google Scholar

[6]

E. Kalai and M. Smorodinsky, Other solutions to Nash's bargaining problem, Econometrica, 43 (1975), 513-518.  doi: 10.2307/1914280.  Google Scholar

[7]

T. Kruse and P. Strack, Optimal stopping with private information, Journal of Economic Theory, 159 (2015), 702-727.  doi: 10.1016/j.jet.2015.03.001.  Google Scholar

[8]

R. B. Myerson, Incentive compatibility and the bargaining problem, Econometrica, 47 (1979), 61-73.  doi: 10.2307/1912346.  Google Scholar

[9]

R. B. Myerson, Cooperative games with imcomplete information, International Journal of Game Theory, 13 (1984), 69-96.  doi: 10.1007/BF01769817.  Google Scholar

[10]

R. B. Myerson, Two-person bargaining problems with incomplete information, Econometrica, 52 (1984), 461-487.  doi: 10.2307/1911499.  Google Scholar

[11]

J. F. Nash, The bargaining problem, Econometrica, 18 (1950), 155-162.  doi: 10.2307/1907266.  Google Scholar

[12]

Ö. Özer and W. Wei, Strategic commitments for an optimal capacity decision under asymmetric forecast information, Management Science, 52 (2006), 1238-1257.   Google Scholar

[13]

M. A. Perles and M. Maschler, The super-additive solution for the Nash bargaining game, International Journal of Game Theory, 10 (1981), 163-193.  doi: 10.1007/BF01755963.  Google Scholar

[14] H. L. Royden and P. Fitzpatrick, Real Analysis, 3$^{ed}$ edition, Macmillan, New York, 1988.   Google Scholar
[15]

F. Weidner, The generalized Nash bargaining solution and incentive compatible mechanisms, International Journal of Game Theory, 21 (1992), 109-129.  doi: 10.1007/BF01245455.  Google Scholar

show all references

References:
[1]

X. Brusset and P. J. Agrell, Intrinsic impediments to category captainship collaboration, Journal of Industrial and Management Optimization, 13 (2017), 113-133.  doi: 10.3934/jimo.2016007.  Google Scholar

[2]

W. S. ChangB. Chen and T. C. Salmon, An investigation of the average bid mechanism for procurement auctions, Management Science, 61 (2015), 1237-1254.  doi: 10.1287/mnsc.2013.1893.  Google Scholar

[3]

J. C. Harsanyi and R. Selten, A generalized Nash solution for two-person bargaining games with incomplete information, Management Science, 18 (1972), 80-106.  doi: 10.1287/mnsc.18.5.80.  Google Scholar

[4]

B. Holmström and R. B. Myerson, Efficient and durable decision rules with incomplete information, Econometrica, 51 (1983), 1799-1819.   Google Scholar

[5]

M. HuangX. QianS. C. Fang and X. Wang, Winner determination for risk aversion buyers in multi-attribute reverse auction, Omega, 59 (2016), 184-200.  doi: 10.1016/j.omega.2015.06.007.  Google Scholar

[6]

E. Kalai and M. Smorodinsky, Other solutions to Nash's bargaining problem, Econometrica, 43 (1975), 513-518.  doi: 10.2307/1914280.  Google Scholar

[7]

T. Kruse and P. Strack, Optimal stopping with private information, Journal of Economic Theory, 159 (2015), 702-727.  doi: 10.1016/j.jet.2015.03.001.  Google Scholar

[8]

R. B. Myerson, Incentive compatibility and the bargaining problem, Econometrica, 47 (1979), 61-73.  doi: 10.2307/1912346.  Google Scholar

[9]

R. B. Myerson, Cooperative games with imcomplete information, International Journal of Game Theory, 13 (1984), 69-96.  doi: 10.1007/BF01769817.  Google Scholar

[10]

R. B. Myerson, Two-person bargaining problems with incomplete information, Econometrica, 52 (1984), 461-487.  doi: 10.2307/1911499.  Google Scholar

[11]

J. F. Nash, The bargaining problem, Econometrica, 18 (1950), 155-162.  doi: 10.2307/1907266.  Google Scholar

[12]

Ö. Özer and W. Wei, Strategic commitments for an optimal capacity decision under asymmetric forecast information, Management Science, 52 (2006), 1238-1257.   Google Scholar

[13]

M. A. Perles and M. Maschler, The super-additive solution for the Nash bargaining game, International Journal of Game Theory, 10 (1981), 163-193.  doi: 10.1007/BF01755963.  Google Scholar

[14] H. L. Royden and P. Fitzpatrick, Real Analysis, 3$^{ed}$ edition, Macmillan, New York, 1988.   Google Scholar
[15]

F. Weidner, The generalized Nash bargaining solution and incentive compatible mechanisms, International Journal of Game Theory, 21 (1992), 109-129.  doi: 10.1007/BF01245455.  Google Scholar

[1]

Zhang Chao, Minghua Yang. BMO type space associated with Neumann operator and application to a class of parabolic equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021104

[2]

Yongqiang Fu, Xiaoju Zhang. Global existence and asymptotic behavior of weak solutions for time-space fractional Kirchhoff-type diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021091

[3]

Ankit Kumar, Kamal Jeet, Ramesh Kumar Vats. Controllability of Hilfer fractional integro-differential equations of Sobolev-type with a nonlocal condition in a Banach space. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021016

[4]

Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009

[5]

Wei Liu, Pavel Krejčí, Guoju Ye. Continuity properties of Prandtl-Ishlinskii operators in the space of regulated functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3783-3795. doi: 10.3934/dcdsb.2017190

[6]

Valery Y. Glizer. Novel Conditions of Euclidean space controllability for singularly perturbed systems with input delay. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 307-320. doi: 10.3934/naco.2020027

[7]

Yuan Gao, Jian-Guo Liu, Tao Luo, Yang Xiang. Revisit of the Peierls-Nabarro model for edge dislocations in Hilbert space. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3177-3207. doi: 10.3934/dcdsb.2020224

[8]

Xinqun Mei, Jundong Zhou. The interior gradient estimate of prescribed Hessian quotient curvature equation in the hyperbolic space. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1187-1198. doi: 10.3934/cpaa.2021012

[9]

Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069

[10]

Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199

[11]

Ling-Bing He, Li Xu. On the compressible Navier-Stokes equations in the whole space: From non-isentropic flow to isentropic flow. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3489-3530. doi: 10.3934/dcds.2021005

[12]

Tobias Breiten, Sergey Dolgov, Martin Stoll. Solving differential Riccati equations: A nonlinear space-time method using tensor trains. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 407-429. doi: 10.3934/naco.2020034

[13]

Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021014

[14]

Beom-Seok Han, Kyeong-Hun Kim, Daehan Park. A weighted Sobolev space theory for the diffusion-wave equations with time-fractional derivatives on $ C^{1} $ domains. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3415-3445. doi: 10.3934/dcds.2021002

[15]

Juliang Zhang, Jian Chen. Information sharing in a make-to-stock supply chain. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1169-1189. doi: 10.3934/jimo.2014.10.1169

[16]

Junichi Minagawa. On the uniqueness of Nash equilibrium in strategic-form games. Journal of Dynamics & Games, 2020, 7 (2) : 97-104. doi: 10.3934/jdg.2020006

[17]

Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022

[18]

Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, 2021, 14 (2) : 199-209. doi: 10.3934/krm.2021002

[19]

Anderson L. A. de Araujo, Marcelo Montenegro. Existence of solution and asymptotic behavior for a class of parabolic equations. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1213-1227. doi: 10.3934/cpaa.2021017

[20]

Yumi Yahagi. Construction of unique mild solution and continuity of solution for the small initial data to 1-D Keller-Segel system. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021099

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (142)
  • HTML views (959)
  • Cited by (0)

Other articles
by authors

[Back to Top]