Advanced Search
Article Contents
Article Contents

On the convergence properties of a smoothing approach for mathematical programs with symmetric cone complementarity constraints

This study is supported by the National Natural Science Foundation of China under projects No.11401210, No.11671183, No.11571059, No.91330206 and No.11301049.
Abstract Full Text(HTML) Related Papers Cited by
  • This paper focuses on a class of mathematical programs with symmetric cone complementarity constraints (SCMPCC). The explicit expression of C-stationary condition and SCMPCC-linear independence constraint qualification (denoted by SCMPCC-LICQ) for SCMPCC are first presented. We analyze a parametric smoothing approach for solving this program in which SCMPCC is replaced by a smoothing problem $P_{\varepsilon}$ depending on a (small) parameter $\varepsilon$. We are interested in the convergence behavior of the feasible set, stationary points, solution mapping and optimal value function of problem $P_{\varepsilon}$ when $\varepsilon \to 0$ under SCMPCC-LICQ. In particular, it is shown that the convergence rate of Hausdorff distance between feasible sets $\mathcal{F}_{\varepsilon}$ and $\mathcal{F}$ is of order $\mbox{O}(|\varepsilon|)$ and the solution mapping and optimal value of $P_{\varepsilon}$ are outer semicontinuous and locally Lipschitz continuous at $\varepsilon=0$ respectively. Moreover, any accumulation point of stationary points of $P_{\varepsilon}$ is a C-stationary point of SCMPCC under SCMPCC-LICQ.

    Mathematics Subject Classification: Primary: 90C33, 90C26; Secondary: 65K05.


    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] A. Ben-Tal and A. Nemirovski, Robust convex optimization methodology and applications, Mathematical Programming, 92 (2002), 453-480.  doi: 10.1007/s101070100286.
    [2] G. Bouza and G. Still, Mathematical programs with complementarity constraints: Convergence properties of a smoothing method, Mathematics of Operations Research, 32 (2007), 467-483.  doi: 10.1287/moor.1060.0245.
    [3] X. Chen and M. Fukushima, A smoothing method for a mathematical program with P-matrix linear complementarity constraints, Computational Optimization and Applications, 27 (2004), 223-246.  doi: 10.1023/B:COAP.0000013057.54647.6d.
    [4] F. ClarkeOptimization and Nonsmooth Analysis, John Wiley and Sons, New York, 1983. 
    [5] C. DingD. Sun and J. Ye, First order optimality conditions for mathematical programs with semidefinite cone complementarity constraints, Mathematical Programming, Ser.A, 147 (2014), 539-579.  doi: 10.1007/s10107-013-0735-z.
    [6] F. FacchineiH. Jiang and L. Qi, A smoothing method for mathematical programs with equilibrium constraints, Mathematical Programming, 85 (1999), 107-134.  doi: 10.1007/s10107990015a.
    [7] J. Faraut and  A. KorányiAnalysis on Symmetric Cones, Oxford University Press, New York, 1994. 
    [8] L. Faybusovich, Linear systems in Jordan algebras and primal-dual interior-point algorithm, Journal of Computational and Applied Mathematics, 86 (1997), 149-175.  doi: 10.1016/S0377-0427(97)00153-2.
    [9] M. Fukushima and J. Pang, Convergence of a smoothing continuation method for mathematical problems with complementarity constraints, Lecture Notes in Economics and Mathematical Systems, 477 (1999), 99-110.  doi: 10.1007/978-3-642-45780-7_7.
    [10] M. GowdaR. Sznajder and J. Tao, Some P-properties for linear transformations on Euclidean Jordan algebras, Linear algebra and its applications, 393 (2004), 203-232.  doi: 10.1016/j.laa.2004.03.028.
    [11] K. Koecher, The Minnesota Notes on Jordan Algebras and Their Applications, edited and annotated by A. Brieg and S. Walcher, Springer, Berlin, 1999. doi: 10.1007/BFb0096285.
    [12] G. Lin and M. Fukushima, A modified relaxation scheme for mathematical prgrams with complementarity constraints, Annals of Operations Research, 133 (2005), 63-84.  doi: 10.1007/s10479-004-5024-z.
    [13] Z. LuoJ. Pang and  D. RalphMathematical Programs with Equilibrium Constraints, Cambridge University Press, Cambridge, United Kingdom, 1996.  doi: 10.1017/CBO9780511983658.
    [14] J. Outrata, M. Ko$\breve{c}$vara and J. Zowe, Nonsmooth Approach to Optimization Problems with Equilibrium Constraints, Kluwer Academic Publishers, Boston, MA, 1998. doi: 10.1007/978-1-4757-2825-5.
    [15] R. Rockafellar and  R. WetsVariational Analysis, Springer-Verlag, New York, 1998.  doi: 10.1007/978-3-642-02431-3.
    [16] S. Scheel and S. Scholtes, Mathematical programs with complementarity constraints: Stationarity, optimality, and sensitivity, Mathematics of Operation Research, 25 (2000), 1-22.  doi: 10.1287/moor.
    [17] S. Scholtes, Convergence properties of a regularization scheme for mathematical programs with complementarity constraints, SIAM Journal on Optimization, 11 (2001), 918-936.  doi: 10.1137/S1052623499361233.
    [18] D. Sun and J. Sun, Löwner's operator and spectral functions on Euclidean Jordan algebras, Mathematics of Operation Research, 33 (2008), 421-445.  doi: 10.1287/moor.1070.0300.
    [19] D. SunJ. Sun and L. Zhang, The rate of convergence of the augmented Lagrangian method for nonlinear semidefinite programming, Mathematical Programming, 114 (2008), 349-391.  doi: 10.1007/s10107-007-0105-9.
    [20] E. Takeshi, A Smoothing Method for Mathematical Programs with Second-Order Cone Complementarity Constraints, Master thesis, Kyoto University in Kyoto, 2007.
    [21] Y. Wang, Perturbation Analysis of Optimimization Problems over Symmetric Cones, Ph. D. Thesis, Dalian University of Technology, China, 2008.
    [22] T. Yan and M. Fukushima, Smoothing method for mathematical programs with symmetric cone complementarity constraints, Optimization, 60 (2011), 113-128.  doi: 10.1080/02331934.2010.541458.
    [23] Y. ZhangJ. Wu and L. Zhang, First order necessary optimality conditions for mathematical programs with second-order cone complementarity constraint, Journal of Global Optimization, 63 (2015), 253-279.  doi: 10.1007/s10898-015-0295-2.
    [24] Y. ZhangL. Zhang and J. Wu, Convergence properties of a smoothing approach for mathematical programs with second-order cone complementarity constraints, Set-Valued and Variational Analysis, 19 (2011), 609-646.  doi: 10.1007/s11228-011-0190-z.
  • 加载中

Article Metrics

HTML views(1692) PDF downloads(330) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint