    • Previous Article
Optimal decisions for a dual-channel supply chain under information asymmetry
• JIMO Home
• This Issue
• Next Article
On the convergence properties of a smoothing approach for mathematical programs with symmetric cone complementarity constraints
July  2018, 14(3): 1007-1022. doi: 10.3934/jimo.2017087

## Uniqueness of solutions to fuzzy relational equations regarding Max-av composition and strong regularity of the matrices in Max-av algebra

 1 Teaching and Research Office of Mathematics, Department of Basics, PLA Dalian Naval Academy, Dalian 116018, Liaoning, China 2 Department of Mathematics, Dalian Maritime University, Dalian 116026, Liaoning, China 3 School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, Liaoning, PR China 4 School of Mathematics and Information Science, Shandong Institute of Business and Technology, , Yantai 264005, Shandong, China

* Corresponding author: Jinlong Yuan(yuanjinlong0613@163.com)

The reviewing process of this paper was handled by Changzhi Wu

Received  April 2016 Revised  December 2016 Published  September 2017

Fund Project: The second author is supported by the China Scholarship Council (Grant No. 201506060121) and Fundamental Research Funds for Central Universities in China. The fifth author is supported by the National Natural Science Foundation of China (Grant No. 11771008) and the Natural Science Foundation of Shandong Province in China (Grant Nos.: ZR2015FM014, ZR2015AL010 and ZR2017MA005)

The problem of solving a fuzzy relational equation plays an important role in fuzzy systems. In this paper, we investigate the uniqueness of solutions of fuzzy relational equations regarding Max-av composition through the relationship between minimal solutions and minimal coverage. A method for verifying the strong regularity of matrices in fuzzy Max-av algebra is proposed in the paper.

Citation: Jun Xie, Jinlong Yuan, Dongxia Wang, Weili Liu, Chongyang Liu. Uniqueness of solutions to fuzzy relational equations regarding Max-av composition and strong regularity of the matrices in Max-av algebra. Journal of Industrial & Management Optimization, 2018, 14 (3) : 1007-1022. doi: 10.3934/jimo.2017087
##### References:
  U. Ahmed and M. Saqib, Optimal solution of fuzzy relation equation, Blekinge Institute of Technology, 2010. Google Scholar  K. Cechlarova, Unique solvability of max-min fuzzy equtaions and strong regularity of matrices over fuzzy algebra, Fuzzy Sets and Systems, 75 (1995), 165-177.  doi: 10.1016/0165-0114(95)00021-C.  Google Scholar  K. Cechlarova and K. Kolesar, An efficient algorithm to computing max-min inverse fuzzy relation for abductive reasoning, IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 40 (2010), 158-169.   Google Scholar  T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, Introduction to Algorithms, Third edition. MIT Press, Cambridge, MA, 2009. Google Scholar  B. Davvaz, Strong regularity and fuzzy strong regularity in semihypergroups, Korean Society for Computational and Applied Mathematics and Korean SIGCAM, 2000. Google Scholar  S. C. Fang and J. Loetamonphong, An efficient solution procedure for fuzzy relation equations with max-product composition, IEEE Transactions on Fuzzy Systems, 7 (1999), 441-445.   Google Scholar  M. Gavalec, Solvability and unique solvability of max-min fuzzy equations, Fuzzy Sets and Systems, 124 (2001), 385-393.  doi: 10.1016/S0165-0114(01)00108-7.  Google Scholar  M. Gavalec and J. Plavka, Strong regularity of matrices in general max-min algebra, Linear Algebra and its Applications, 371 (2003), 241-254.  doi: 10.1016/S0024-3795(03)00462-2.  Google Scholar  S. M. Guu, Y. K. Wu and E. S. Lee, Multi-objective optimization with a max-t-norm fuzzy relational equation constraint, Computers and Mathematics with Applications, 61 (2011), 1559-1566.  doi: 10.1016/j.camwa.2011.01.023.  Google Scholar  P. Ketty and K. Yordan, Algorithm for solving max-product fuzzy relational equations, Soft Computing, 11 (2007), 593-605.   Google Scholar  E. Khorram and A. Ghodousian, Linear objective function optimization with fuzzy relation equation constraints regarding max-av composition, Applied Mathematics and Computation, 173 (2006), 872-886.  doi: 10.1016/j.amc.2005.04.021.  Google Scholar  W. Y. Kuen, Optimization of fuzzy relational equations with max-av composition, Information Sciences, 177 (2007), 4216-4229.  doi: 10.1016/j.ins.2007.02.037.  Google Scholar  P. Li and Y. Liu, Linear optimization with bipolar fuzzy relational equation constraints using the Lukasiewicz triangular norm, Soft Computing, 18 (2014), 1399-1404.  doi: 10.1007/s00500-013-1152-1. Google Scholar  P. K. Li and S. C. Fang, On the resolution and optimization of a system of fuzzy relational equations with sup-T composition, Fuzzy Optim Decis Making, 7 (2008), 169-214.  doi: 10.1007/s10700-008-9029-y.  Google Scholar  P. K. Li and S. C. Fang, On the unique solvability of fuzzy relational equations, Fuzzy Optim Decis Making, 10 (2011), 115-124.  doi: 10.1007/s10700-011-9100-y.  Google Scholar  J. L. Lin, W. Y. Kuen and S. M. Guu, On fuzzy relational equations and the covering problem, Information Sciences, 181 (2011), 2951-2963.  doi: 10.1016/j.ins.2011.03.004. Google Scholar  J. Loetamonphong and S. C. Fang, Optimization of fuzzy relation equations with max-product composition, Fuzzy Sets and Systems, 118 (2001), 509-517.  doi: 10.1016/S0165-0114(98)00417-5.  Google Scholar  A. V. Markovskii, Solution of fuzzy equations with max-product composition in inverse control and decision making problems, Automation and Remote Control, 65 (2004), 1486-1495.  doi: 10.1023/B:AURC.0000041426.51975.50.  Google Scholar  S. Martin and N. Lenka, Fuzzy relation equations-new solutions and solvability criteria, University of Ostrava, (2006). Google Scholar  K. Peeva, Resolution of fuzzy relational equations-method, algorithm and software with applications, Journal Information Sciences: an International Journal, 234 (2013), 44-63.  doi: 10.1016/j.ins.2011.04.011.  Google Scholar  S. M. Wang, S. C. Fang and H. L. M. Nuttle, Solution sets of interval-valued fuzzy relational equations, Fuzzy Optimization and Decision Making, 2 (2003), 41-60.  doi: 10.1023/A:1022800330844.  Google Scholar  Y. K. Wu and S. M. Guu, An efficient procedure for solving a fuzzy relational equation with max-Archimedean t-norm composition, IEEE Transactions on Fuzzy Systems, 16 (2008), 73-84.   Google Scholar

show all references

##### References:
  U. Ahmed and M. Saqib, Optimal solution of fuzzy relation equation, Blekinge Institute of Technology, 2010. Google Scholar  K. Cechlarova, Unique solvability of max-min fuzzy equtaions and strong regularity of matrices over fuzzy algebra, Fuzzy Sets and Systems, 75 (1995), 165-177.  doi: 10.1016/0165-0114(95)00021-C.  Google Scholar  K. Cechlarova and K. Kolesar, An efficient algorithm to computing max-min inverse fuzzy relation for abductive reasoning, IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 40 (2010), 158-169.   Google Scholar  T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, Introduction to Algorithms, Third edition. MIT Press, Cambridge, MA, 2009. Google Scholar  B. Davvaz, Strong regularity and fuzzy strong regularity in semihypergroups, Korean Society for Computational and Applied Mathematics and Korean SIGCAM, 2000. Google Scholar  S. C. Fang and J. Loetamonphong, An efficient solution procedure for fuzzy relation equations with max-product composition, IEEE Transactions on Fuzzy Systems, 7 (1999), 441-445.   Google Scholar  M. Gavalec, Solvability and unique solvability of max-min fuzzy equations, Fuzzy Sets and Systems, 124 (2001), 385-393.  doi: 10.1016/S0165-0114(01)00108-7.  Google Scholar  M. Gavalec and J. Plavka, Strong regularity of matrices in general max-min algebra, Linear Algebra and its Applications, 371 (2003), 241-254.  doi: 10.1016/S0024-3795(03)00462-2.  Google Scholar  S. M. Guu, Y. K. Wu and E. S. Lee, Multi-objective optimization with a max-t-norm fuzzy relational equation constraint, Computers and Mathematics with Applications, 61 (2011), 1559-1566.  doi: 10.1016/j.camwa.2011.01.023.  Google Scholar  P. Ketty and K. Yordan, Algorithm for solving max-product fuzzy relational equations, Soft Computing, 11 (2007), 593-605.   Google Scholar  E. Khorram and A. Ghodousian, Linear objective function optimization with fuzzy relation equation constraints regarding max-av composition, Applied Mathematics and Computation, 173 (2006), 872-886.  doi: 10.1016/j.amc.2005.04.021.  Google Scholar  W. Y. Kuen, Optimization of fuzzy relational equations with max-av composition, Information Sciences, 177 (2007), 4216-4229.  doi: 10.1016/j.ins.2007.02.037.  Google Scholar  P. Li and Y. Liu, Linear optimization with bipolar fuzzy relational equation constraints using the Lukasiewicz triangular norm, Soft Computing, 18 (2014), 1399-1404.  doi: 10.1007/s00500-013-1152-1. Google Scholar  P. K. Li and S. C. Fang, On the resolution and optimization of a system of fuzzy relational equations with sup-T composition, Fuzzy Optim Decis Making, 7 (2008), 169-214.  doi: 10.1007/s10700-008-9029-y.  Google Scholar  P. K. Li and S. C. Fang, On the unique solvability of fuzzy relational equations, Fuzzy Optim Decis Making, 10 (2011), 115-124.  doi: 10.1007/s10700-011-9100-y.  Google Scholar  J. L. Lin, W. Y. Kuen and S. M. Guu, On fuzzy relational equations and the covering problem, Information Sciences, 181 (2011), 2951-2963.  doi: 10.1016/j.ins.2011.03.004. Google Scholar  J. Loetamonphong and S. C. Fang, Optimization of fuzzy relation equations with max-product composition, Fuzzy Sets and Systems, 118 (2001), 509-517.  doi: 10.1016/S0165-0114(98)00417-5.  Google Scholar  A. V. Markovskii, Solution of fuzzy equations with max-product composition in inverse control and decision making problems, Automation and Remote Control, 65 (2004), 1486-1495.  doi: 10.1023/B:AURC.0000041426.51975.50.  Google Scholar  S. Martin and N. Lenka, Fuzzy relation equations-new solutions and solvability criteria, University of Ostrava, (2006). Google Scholar  K. Peeva, Resolution of fuzzy relational equations-method, algorithm and software with applications, Journal Information Sciences: an International Journal, 234 (2013), 44-63.  doi: 10.1016/j.ins.2011.04.011.  Google Scholar  S. M. Wang, S. C. Fang and H. L. M. Nuttle, Solution sets of interval-valued fuzzy relational equations, Fuzzy Optimization and Decision Making, 2 (2003), 41-60.  doi: 10.1023/A:1022800330844.  Google Scholar  Y. K. Wu and S. M. Guu, An efficient procedure for solving a fuzzy relational equation with max-Archimedean t-norm composition, IEEE Transactions on Fuzzy Systems, 16 (2008), 73-84.   Google Scholar
  Út V. Lê. Regularity of the solution of a nonlinear wave equation. Communications on Pure & Applied Analysis, 2010, 9 (4) : 1099-1115. doi: 10.3934/cpaa.2010.9.1099  Rafael De La Llave, R. Obaya. Regularity of the composition operator in spaces of Hölder functions. Discrete & Continuous Dynamical Systems - A, 1999, 5 (1) : 157-184. doi: 10.3934/dcds.1999.5.157  Nicolas Fourrier, Irena Lasiecka. Regularity and stability of a wave equation with a strong damping and dynamic boundary conditions. Evolution Equations & Control Theory, 2013, 2 (4) : 631-667. doi: 10.3934/eect.2013.2.631  Yalçin Sarol, Frederi Viens. Time regularity of the evolution solution to fractional stochastic heat equation. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 895-910. doi: 10.3934/dcdsb.2006.6.895  Diane Denny. A unique positive solution to a system of semilinear elliptic equations. Conference Publications, 2013, 2013 (special) : 193-195. doi: 10.3934/proc.2013.2013.193  Cuilian You, Yangyang Hao. Stability in mean for fuzzy differential equation. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1375-1385. doi: 10.3934/jimo.2018099  Xinlong Feng, Yinnian He. On uniform in time $H^2$-regularity of the solution for the 2D Cahn-Hilliard equation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5387-5400. doi: 10.3934/dcds.2016037  Kim-Ngan Le, William McLean, Martin Stynes. Existence, uniqueness and regularity of the solution of the time-fractional Fokker–Planck equation with general forcing. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2765-2787. doi: 10.3934/cpaa.2019124  Ling Mi. Asymptotic behavior for the unique positive solution to a singular elliptic problem. Communications on Pure & Applied Analysis, 2015, 14 (3) : 1053-1072. doi: 10.3934/cpaa.2015.14.1053  Laurent Bourgeois. Quantification of the unique continuation property for the heat equation. Mathematical Control & Related Fields, 2017, 7 (3) : 347-367. doi: 10.3934/mcrf.2017012  Can Zhang. Quantitative unique continuation for the heat equation with Coulomb potentials. Mathematical Control & Related Fields, 2018, 8 (3&4) : 1097-1116. doi: 10.3934/mcrf.2018047  Ettore Fornasini, Telma Pinho, Raquel Pinto, Paula Rocha. Composition codes. Advances in Mathematics of Communications, 2016, 10 (1) : 163-177. doi: 10.3934/amc.2016.10.163  G. Deugoué, J. K. Djoko, A. C. Fouape, A. Ndongmo Ngana. Unique strong solutions and V-attractor of a three dimensional globally modified magnetohydrodynamic equations. Communications on Pure & Applied Analysis, 2020, 19 (3) : 1509-1535. doi: 10.3934/cpaa.2020076  Zengjing Chen, Yuting Lan, Gaofeng Zong. Strong law of large numbers for upper set-valued and fuzzy-set valued probability. Mathematical Control & Related Fields, 2015, 5 (3) : 435-452. doi: 10.3934/mcrf.2015.5.435  Guillaume Warnault. Regularity of the extremal solution for a biharmonic problem with general nonlinearity. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1709-1723. doi: 10.3934/cpaa.2009.8.1709  Hua Qiu. Regularity criteria of smooth solution to the incompressible viscoelastic flow. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2873-2888. doi: 10.3934/cpaa.2013.12.2873  Ábel Garab. Unique periodic orbits of a delay differential equation with piecewise linear feedback function. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2369-2387. doi: 10.3934/dcds.2013.33.2369  Peng Jiang. Unique global solution of an initial-boundary value problem to a diffusion approximation model in radiation hydrodynamics. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 3015-3037. doi: 10.3934/dcds.2015.35.3015  Joseph W. Jerome. Nonlinear conformation response in the finite channel: Existence of a unique solution for the dynamic PNP model. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2465-2482. doi: 10.3934/dcdsb.2012.17.2465  Qiaoyi Hu, Zhijun Qiao. Analyticity, Gevrey regularity and unique continuation for an integrable multi-component peakon system with an arbitrary polynomial function. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6975-7000. doi: 10.3934/dcds.2016103

2018 Impact Factor: 1.025