-
Previous Article
Optimal decisions for a dual-channel supply chain under information asymmetry
- JIMO Home
- This Issue
-
Next Article
On the convergence properties of a smoothing approach for mathematical programs with symmetric cone complementarity constraints
Uniqueness of solutions to fuzzy relational equations regarding Max-av composition and strong regularity of the matrices in Max-av algebra
1. | Teaching and Research Office of Mathematics, Department of Basics, PLA Dalian Naval Academy, Dalian 116018, Liaoning, China |
2. | Department of Mathematics, Dalian Maritime University, Dalian 116026, Liaoning, China |
3. | School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, Liaoning, PR China |
4. | School of Mathematics and Information Science, Shandong Institute of Business and Technology, , Yantai 264005, Shandong, China |
The problem of solving a fuzzy relational equation plays an important role in fuzzy systems. In this paper, we investigate the uniqueness of solutions of fuzzy relational equations regarding Max-av composition through the relationship between minimal solutions and minimal coverage. A method for verifying the strong regularity of matrices in fuzzy Max-av algebra is proposed in the paper.
References:
[1] |
U. Ahmed and M. Saqib, Optimal solution of fuzzy relation equation, Blekinge Institute of Technology, 2010. |
[2] |
K. Cechlarova,
Unique solvability of max-min fuzzy equtaions and strong regularity of matrices over fuzzy algebra, Fuzzy Sets and Systems, 75 (1995), 165-177.
doi: 10.1016/0165-0114(95)00021-C. |
[3] |
K. Cechlarova and K. Kolesar,
An efficient algorithm to computing max-min inverse fuzzy relation for abductive reasoning, IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 40 (2010), 158-169.
|
[4] |
T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, Introduction to Algorithms, Third edition. MIT Press, Cambridge, MA, 2009. |
[5] |
B. Davvaz, Strong regularity and fuzzy strong regularity in semihypergroups, Korean Society for Computational and Applied Mathematics and Korean SIGCAM, 2000. |
[6] |
S. C. Fang and J. Loetamonphong,
An efficient solution procedure for fuzzy relation equations with max-product composition, IEEE Transactions on Fuzzy Systems, 7 (1999), 441-445.
|
[7] |
M. Gavalec,
Solvability and unique solvability of max-min fuzzy equations, Fuzzy Sets and Systems, 124 (2001), 385-393.
doi: 10.1016/S0165-0114(01)00108-7. |
[8] |
M. Gavalec and J. Plavka,
Strong regularity of matrices in general max-min algebra, Linear Algebra and its Applications, 371 (2003), 241-254.
doi: 10.1016/S0024-3795(03)00462-2. |
[9] |
S. M. Guu, Y. K. Wu and E. S. Lee,
Multi-objective optimization with a max-t-norm fuzzy relational equation constraint, Computers and Mathematics with Applications, 61 (2011), 1559-1566.
doi: 10.1016/j.camwa.2011.01.023. |
[10] |
P. Ketty and K. Yordan,
Algorithm for solving max-product fuzzy relational equations, Soft Computing, 11 (2007), 593-605.
|
[11] |
E. Khorram and A. Ghodousian,
Linear objective function optimization with fuzzy relation equation constraints regarding max-av composition, Applied Mathematics and Computation, 173 (2006), 872-886.
doi: 10.1016/j.amc.2005.04.021. |
[12] |
W. Y. Kuen,
Optimization of fuzzy relational equations with max-av composition, Information Sciences, 177 (2007), 4216-4229.
doi: 10.1016/j.ins.2007.02.037. |
[13] |
P. Li and Y. Liu,
Linear optimization with bipolar fuzzy relational equation constraints using the Lukasiewicz triangular norm, Soft Computing, 18 (2014), 1399-1404.
doi: 10.1007/s00500-013-1152-1. |
[14] |
P. K. Li and S. C. Fang,
On the resolution and optimization of a system of fuzzy relational equations with sup-T composition, Fuzzy Optim Decis Making, 7 (2008), 169-214.
doi: 10.1007/s10700-008-9029-y. |
[15] |
P. K. Li and S. C. Fang,
On the unique solvability of fuzzy relational equations, Fuzzy Optim Decis Making, 10 (2011), 115-124.
doi: 10.1007/s10700-011-9100-y. |
[16] |
J. L. Lin, W. Y. Kuen and S. M. Guu,
On fuzzy relational equations and the covering problem, Information Sciences, 181 (2011), 2951-2963.
doi: 10.1016/j.ins.2011.03.004. |
[17] |
J. Loetamonphong and S. C. Fang,
Optimization of fuzzy relation equations with max-product composition, Fuzzy Sets and Systems, 118 (2001), 509-517.
doi: 10.1016/S0165-0114(98)00417-5. |
[18] |
A. V. Markovskii,
Solution of fuzzy equations with max-product composition in inverse control and decision making problems, Automation and Remote Control, 65 (2004), 1486-1495.
doi: 10.1023/B:AURC.0000041426.51975.50. |
[19] |
S. Martin and N. Lenka, Fuzzy relation equations-new solutions and solvability criteria, University of Ostrava, (2006). |
[20] |
K. Peeva,
Resolution of fuzzy relational equations-method, algorithm and software with applications, Journal Information Sciences: an International Journal, 234 (2013), 44-63.
doi: 10.1016/j.ins.2011.04.011. |
[21] |
S. M. Wang, S. C. Fang and H. L. M. Nuttle,
Solution sets of interval-valued fuzzy relational equations, Fuzzy Optimization and Decision Making, 2 (2003), 41-60.
doi: 10.1023/A:1022800330844. |
[22] |
Y. K. Wu and S. M. Guu,
An efficient procedure for solving a fuzzy relational equation with max-Archimedean t-norm composition, IEEE Transactions on Fuzzy Systems, 16 (2008), 73-84.
|
show all references
The reviewing process of this paper was handled by Changzhi Wu
References:
[1] |
U. Ahmed and M. Saqib, Optimal solution of fuzzy relation equation, Blekinge Institute of Technology, 2010. |
[2] |
K. Cechlarova,
Unique solvability of max-min fuzzy equtaions and strong regularity of matrices over fuzzy algebra, Fuzzy Sets and Systems, 75 (1995), 165-177.
doi: 10.1016/0165-0114(95)00021-C. |
[3] |
K. Cechlarova and K. Kolesar,
An efficient algorithm to computing max-min inverse fuzzy relation for abductive reasoning, IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 40 (2010), 158-169.
|
[4] |
T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, Introduction to Algorithms, Third edition. MIT Press, Cambridge, MA, 2009. |
[5] |
B. Davvaz, Strong regularity and fuzzy strong regularity in semihypergroups, Korean Society for Computational and Applied Mathematics and Korean SIGCAM, 2000. |
[6] |
S. C. Fang and J. Loetamonphong,
An efficient solution procedure for fuzzy relation equations with max-product composition, IEEE Transactions on Fuzzy Systems, 7 (1999), 441-445.
|
[7] |
M. Gavalec,
Solvability and unique solvability of max-min fuzzy equations, Fuzzy Sets and Systems, 124 (2001), 385-393.
doi: 10.1016/S0165-0114(01)00108-7. |
[8] |
M. Gavalec and J. Plavka,
Strong regularity of matrices in general max-min algebra, Linear Algebra and its Applications, 371 (2003), 241-254.
doi: 10.1016/S0024-3795(03)00462-2. |
[9] |
S. M. Guu, Y. K. Wu and E. S. Lee,
Multi-objective optimization with a max-t-norm fuzzy relational equation constraint, Computers and Mathematics with Applications, 61 (2011), 1559-1566.
doi: 10.1016/j.camwa.2011.01.023. |
[10] |
P. Ketty and K. Yordan,
Algorithm for solving max-product fuzzy relational equations, Soft Computing, 11 (2007), 593-605.
|
[11] |
E. Khorram and A. Ghodousian,
Linear objective function optimization with fuzzy relation equation constraints regarding max-av composition, Applied Mathematics and Computation, 173 (2006), 872-886.
doi: 10.1016/j.amc.2005.04.021. |
[12] |
W. Y. Kuen,
Optimization of fuzzy relational equations with max-av composition, Information Sciences, 177 (2007), 4216-4229.
doi: 10.1016/j.ins.2007.02.037. |
[13] |
P. Li and Y. Liu,
Linear optimization with bipolar fuzzy relational equation constraints using the Lukasiewicz triangular norm, Soft Computing, 18 (2014), 1399-1404.
doi: 10.1007/s00500-013-1152-1. |
[14] |
P. K. Li and S. C. Fang,
On the resolution and optimization of a system of fuzzy relational equations with sup-T composition, Fuzzy Optim Decis Making, 7 (2008), 169-214.
doi: 10.1007/s10700-008-9029-y. |
[15] |
P. K. Li and S. C. Fang,
On the unique solvability of fuzzy relational equations, Fuzzy Optim Decis Making, 10 (2011), 115-124.
doi: 10.1007/s10700-011-9100-y. |
[16] |
J. L. Lin, W. Y. Kuen and S. M. Guu,
On fuzzy relational equations and the covering problem, Information Sciences, 181 (2011), 2951-2963.
doi: 10.1016/j.ins.2011.03.004. |
[17] |
J. Loetamonphong and S. C. Fang,
Optimization of fuzzy relation equations with max-product composition, Fuzzy Sets and Systems, 118 (2001), 509-517.
doi: 10.1016/S0165-0114(98)00417-5. |
[18] |
A. V. Markovskii,
Solution of fuzzy equations with max-product composition in inverse control and decision making problems, Automation and Remote Control, 65 (2004), 1486-1495.
doi: 10.1023/B:AURC.0000041426.51975.50. |
[19] |
S. Martin and N. Lenka, Fuzzy relation equations-new solutions and solvability criteria, University of Ostrava, (2006). |
[20] |
K. Peeva,
Resolution of fuzzy relational equations-method, algorithm and software with applications, Journal Information Sciences: an International Journal, 234 (2013), 44-63.
doi: 10.1016/j.ins.2011.04.011. |
[21] |
S. M. Wang, S. C. Fang and H. L. M. Nuttle,
Solution sets of interval-valued fuzzy relational equations, Fuzzy Optimization and Decision Making, 2 (2003), 41-60.
doi: 10.1023/A:1022800330844. |
[22] |
Y. K. Wu and S. M. Guu,
An efficient procedure for solving a fuzzy relational equation with max-Archimedean t-norm composition, IEEE Transactions on Fuzzy Systems, 16 (2008), 73-84.
|
[1] |
Út V. Lê. Regularity of the solution of a nonlinear wave equation. Communications on Pure and Applied Analysis, 2010, 9 (4) : 1099-1115. doi: 10.3934/cpaa.2010.9.1099 |
[2] |
Rafael De La Llave, R. Obaya. Regularity of the composition operator in spaces of Hölder functions. Discrete and Continuous Dynamical Systems, 1999, 5 (1) : 157-184. doi: 10.3934/dcds.1999.5.157 |
[3] |
Nicolas Fourrier, Irena Lasiecka. Regularity and stability of a wave equation with a strong damping and dynamic boundary conditions. Evolution Equations and Control Theory, 2013, 2 (4) : 631-667. doi: 10.3934/eect.2013.2.631 |
[4] |
Yalçin Sarol, Frederi Viens. Time regularity of the evolution solution to fractional stochastic heat equation. Discrete and Continuous Dynamical Systems - B, 2006, 6 (4) : 895-910. doi: 10.3934/dcdsb.2006.6.895 |
[5] |
Diane Denny. A unique positive solution to a system of semilinear elliptic equations. Conference Publications, 2013, 2013 (special) : 193-195. doi: 10.3934/proc.2013.2013.193 |
[6] |
Taige Wang, Dihong Xu. A quantitative strong unique continuation property of a diffusive SIS model. Discrete and Continuous Dynamical Systems - S, 2022, 15 (6) : 1599-1614. doi: 10.3934/dcdss.2022024 |
[7] |
Xinlong Feng, Yinnian He. On uniform in time $H^2$-regularity of the solution for the 2D Cahn-Hilliard equation. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5387-5400. doi: 10.3934/dcds.2016037 |
[8] |
Kim-Ngan Le, William McLean, Martin Stynes. Existence, uniqueness and regularity of the solution of the time-fractional Fokker–Planck equation with general forcing. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2765-2787. doi: 10.3934/cpaa.2019124 |
[9] |
Cuilian You, Yangyang Hao. Stability in mean for fuzzy differential equation. Journal of Industrial and Management Optimization, 2019, 15 (3) : 1375-1385. doi: 10.3934/jimo.2018099 |
[10] |
Ling Mi. Asymptotic behavior for the unique positive solution to a singular elliptic problem. Communications on Pure and Applied Analysis, 2015, 14 (3) : 1053-1072. doi: 10.3934/cpaa.2015.14.1053 |
[11] |
Ettore Fornasini, Telma Pinho, Raquel Pinto, Paula Rocha. Composition codes. Advances in Mathematics of Communications, 2016, 10 (1) : 163-177. doi: 10.3934/amc.2016.10.163 |
[12] |
Laurent Bourgeois. Quantification of the unique continuation property for the heat equation. Mathematical Control and Related Fields, 2017, 7 (3) : 347-367. doi: 10.3934/mcrf.2017012 |
[13] |
Can Zhang. Quantitative unique continuation for the heat equation with Coulomb potentials. Mathematical Control and Related Fields, 2018, 8 (3&4) : 1097-1116. doi: 10.3934/mcrf.2018047 |
[14] |
Yumi Yahagi. Construction of unique mild solution and continuity of solution for the small initial data to 1-D Keller-Segel system. Discrete and Continuous Dynamical Systems - B, 2022, 27 (3) : 1497-1510. doi: 10.3934/dcdsb.2021099 |
[15] |
G. Deugoué, J. K. Djoko, A. C. Fouape, A. Ndongmo Ngana. Unique strong solutions and V-attractor of a three dimensional globally modified magnetohydrodynamic equations. Communications on Pure and Applied Analysis, 2020, 19 (3) : 1509-1535. doi: 10.3934/cpaa.2020076 |
[16] |
Guillaume Warnault. Regularity of the extremal solution for a biharmonic problem with general nonlinearity. Communications on Pure and Applied Analysis, 2009, 8 (5) : 1709-1723. doi: 10.3934/cpaa.2009.8.1709 |
[17] |
Hua Qiu. Regularity criteria of smooth solution to the incompressible viscoelastic flow. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2873-2888. doi: 10.3934/cpaa.2013.12.2873 |
[18] |
Zengjing Chen, Yuting Lan, Gaofeng Zong. Strong law of large numbers for upper set-valued and fuzzy-set valued probability. Mathematical Control and Related Fields, 2015, 5 (3) : 435-452. doi: 10.3934/mcrf.2015.5.435 |
[19] |
Ábel Garab. Unique periodic orbits of a delay differential equation with piecewise linear feedback function. Discrete and Continuous Dynamical Systems, 2013, 33 (6) : 2369-2387. doi: 10.3934/dcds.2013.33.2369 |
[20] |
Qiaoyi Hu, Zhijun Qiao. Analyticity, Gevrey regularity and unique continuation for an integrable multi-component peakon system with an arbitrary polynomial function. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 6975-7000. doi: 10.3934/dcds.2016103 |
2020 Impact Factor: 1.801
Tools
Metrics
Other articles
by authors
[Back to Top]