• Previous Article
    Second-order optimality conditions for cone constrained multi-objective optimization
  • JIMO Home
  • This Issue
  • Next Article
    Uniqueness of solutions to fuzzy relational equations regarding Max-av composition and strong regularity of the matrices in Max-av algebra
July  2018, 14(3): 1023-1040. doi: 10.3934/jimo.2017088

Optimal decisions for a dual-channel supply chain under information asymmetry

1. 

Hunan provincial Engineering Research Center of Electric Transportation, and Smart Distributed Network, College of Economics and Management, Changsha University of Science and Technology, Changsha 410114, China

2. 

Hunan Province Key Laboratory of Logistics Information and Simulation Technology, College of Economics and Trade, Hunan University, Changsha 410079, China

3. 

Commonwealth Scientific and Industrial Research Organization, Energy Center, Mayfield West, NSW2304, Australia

* Corresponding author: Erbao Cao

Received  February 2016 Revised  May 2017 Published  September 2017

Fund Project: The authors are supported by the National Natural Science Foundation of China under Grants 71420107027,71671061,71331001 and 91547113, the Program for New Century Excellent Talents in University under Grants NCET-13-0181, the Science and Technology Projects of Hunan Province under Grants 2016WK2015 and 2017CT5015.

We discuss the optimal pricing and production decisions in a channel supply chain under symmetric and asymmetric information cases. We compare the optimum policies between the asymmetric information and the full information cases. We analyze the effect of the reseller's cost information on the profits of the partners. We find that information asymmetry is beneficial to the reseller, but is inefficient to the manufacturer and the whole supply chain. The information value increases with uncertainties arising from the reseller's cost structure. The dual-channel supply chain can share information and achieve coordination, if the lump-sum side payment from the manufacturer can make up the loss of the reseller due to sharing information. Finally, the effectiveness of the proposed models is verified by numerical examples.

Citation: Mingyong Lai, Hongzhao Yang, Erbao Cao, Duo Qiu, Jing Qiu. Optimal decisions for a dual-channel supply chain under information asymmetry. Journal of Industrial & Management Optimization, 2018, 14 (3) : 1023-1040. doi: 10.3934/jimo.2017088
References:
[1]

A. AryaB. Mittendorf and M. Sappington, The bright side of supplier encroachment, Marketing Science, 26 (2007), 651-659.   Google Scholar

[2]

T. Boyaci, Competitive stoking and coordination in a multi-channel distribution system, IIE Transactions, 37 (2005), 407-427.   Google Scholar

[3]

G. P. Cachon, Supplier encroachment under asymmetric information, Handbooks in Operations Research & Management Science, 11 (2003), 227-339.   Google Scholar

[4]

G. P. Cachon and M. A. Lariviere, Supply Chain Coordination with Revenue-Sharing Contracts: Strength and Limitations, Management Science, 51 (2005), 30-44.   Google Scholar

[5]

G. Cai, Channel selection and coordination in dual-channel supply chains, Journal of Retailing, 86 (2010), 22-36.   Google Scholar

[6]

B. Cao, Coordination of dual-channel supply chains under demand disruptions management decisions, International Journal of Production Research, 52 (2014), 7114-7131.   Google Scholar

[7]

B. CaoJ. MaC. Wan and Y. Lai, Contracting with asymmetric cost information in a dual-channel supply chain, Operations Research Letters, 41 (2013), 410-414.  doi: 10.1016/j.orl.2013.04.013.  Google Scholar

[8]

K. Y. ChenM. Kaya and Ö. Özer, Dual sales channel management with service competition, Manufacturing & Service Operations Management, 10 (2008), 654-675.   Google Scholar

[9]

J. ChenH. Zhang and Y. Sun, Implementing coordination contracts in a manufacturer Stackelberg dual-channel supply chain, Omega, 40 (2012), 571-583.   Google Scholar

[10]

W. K. Chiang, Product availability in competitive and cooperative dual-channel distribution with stock-out based substitution, European Journal of Operational Research, 200 (2010), 111-126.   Google Scholar

[11]

W. K. ChiangD. Chhajed and J. D. Hess, Direct Marketing, Indirect profits: A Strategic Analysis of Dual-channel supply chain Design, Management Science, 49 (2003), 1-20.   Google Scholar

[12]

C. J. CorbettD. Zhou and C. S. Tang, Designing supply contracts: Contract type and information asymmetry, Management Science, 50 (2004), 550-559.   Google Scholar

[13]

Q. Geng and S. Mallik, Inventory competition and allocation in a multi-channel distribution system, European Journal of Operational Research, 182 (2007), 704-729.   Google Scholar

[14]

G. HuaS. Wang and T. C. E. Cheng, Price and lead time decisions in dual-channel supply chains, European Journal of Operational Research, 205 (2010), 113-126.   Google Scholar

[15]

S. HuangC. Yang and X. Zhang, Pricing and production decisions in a channel supply chain with demand disruptions, Computers & Industrial Engineering, 62 (2012), 70-83.   Google Scholar

[16]

C. A. Ingene and M. E. Parry, Mathematical Models of Distribution Channels, Springer, 2004. Google Scholar

[17]

Z. LiG. M. Stephen and G. Lai, Supplier encroachment under asymmetric information, Management Science, 60 (2014), 449-462.   Google Scholar

[18]

S. K. MukhopadhyayX. Zhu and X. Yue, Optimal contract design for mixed channels under information asymmetry, Production and Operations Management, 17 (2008), 641-650.   Google Scholar

[19]

J. Swaminathan and S. Tayur, Models for supply chains in e-business, Management Science, 49 (2003), 1387-1406.   Google Scholar

[20]

Y. WangL. Jiang and Z. Shen, Channel performance under consignment contract with revenue sharing, Management Science, 50 (2004), 34-47.   Google Scholar

[21]

T. Xiao and X. Qi, A two-stage supply chain with demand sensitive to price, delivery time, and reliability of delivery, Annals of Operations Research, 241 (2016), 475-496.  doi: 10.1007/s10479-012-1085-6.  Google Scholar

[22]

R. Yan, Pricing strategy for companies with mixed online and traditional reselling distribution markets, Journal of Production and Brand Management, 17 (2008), 48-56.   Google Scholar

[23]

R. L. Yan and Z. Pei, Information asymmetry, pricing strategy and firm's performance in the reseller multi-channel manufacturer supply chain, Journal of Business Research, 64 (2011), 377-384.   Google Scholar

[24]

H. M. YangC. Y. Chuang and K. P. Wong, Optimal fuel, power and load-based emissions trades for electric power supply chain equilibrium, IEEE Transactions on Power Systems, 27 (2012), 1147-1157.   Google Scholar

[25]

Z. YaoS. C. H. Leung and K. K. Lai, Manufacturer's revenue-sharing contract and retailer competition, European Journal of Operational Research, 186 (2008), 637-651.  doi: 10.1016/j.ejor.2007.01.049.  Google Scholar

[26]

C. C. Yu and C. S. Wang, A hybrid mining approach for optimizing returns policies in e-retail, Expert Systems with Applications, 35 (2008), 1575-1582.   Google Scholar

show all references

References:
[1]

A. AryaB. Mittendorf and M. Sappington, The bright side of supplier encroachment, Marketing Science, 26 (2007), 651-659.   Google Scholar

[2]

T. Boyaci, Competitive stoking and coordination in a multi-channel distribution system, IIE Transactions, 37 (2005), 407-427.   Google Scholar

[3]

G. P. Cachon, Supplier encroachment under asymmetric information, Handbooks in Operations Research & Management Science, 11 (2003), 227-339.   Google Scholar

[4]

G. P. Cachon and M. A. Lariviere, Supply Chain Coordination with Revenue-Sharing Contracts: Strength and Limitations, Management Science, 51 (2005), 30-44.   Google Scholar

[5]

G. Cai, Channel selection and coordination in dual-channel supply chains, Journal of Retailing, 86 (2010), 22-36.   Google Scholar

[6]

B. Cao, Coordination of dual-channel supply chains under demand disruptions management decisions, International Journal of Production Research, 52 (2014), 7114-7131.   Google Scholar

[7]

B. CaoJ. MaC. Wan and Y. Lai, Contracting with asymmetric cost information in a dual-channel supply chain, Operations Research Letters, 41 (2013), 410-414.  doi: 10.1016/j.orl.2013.04.013.  Google Scholar

[8]

K. Y. ChenM. Kaya and Ö. Özer, Dual sales channel management with service competition, Manufacturing & Service Operations Management, 10 (2008), 654-675.   Google Scholar

[9]

J. ChenH. Zhang and Y. Sun, Implementing coordination contracts in a manufacturer Stackelberg dual-channel supply chain, Omega, 40 (2012), 571-583.   Google Scholar

[10]

W. K. Chiang, Product availability in competitive and cooperative dual-channel distribution with stock-out based substitution, European Journal of Operational Research, 200 (2010), 111-126.   Google Scholar

[11]

W. K. ChiangD. Chhajed and J. D. Hess, Direct Marketing, Indirect profits: A Strategic Analysis of Dual-channel supply chain Design, Management Science, 49 (2003), 1-20.   Google Scholar

[12]

C. J. CorbettD. Zhou and C. S. Tang, Designing supply contracts: Contract type and information asymmetry, Management Science, 50 (2004), 550-559.   Google Scholar

[13]

Q. Geng and S. Mallik, Inventory competition and allocation in a multi-channel distribution system, European Journal of Operational Research, 182 (2007), 704-729.   Google Scholar

[14]

G. HuaS. Wang and T. C. E. Cheng, Price and lead time decisions in dual-channel supply chains, European Journal of Operational Research, 205 (2010), 113-126.   Google Scholar

[15]

S. HuangC. Yang and X. Zhang, Pricing and production decisions in a channel supply chain with demand disruptions, Computers & Industrial Engineering, 62 (2012), 70-83.   Google Scholar

[16]

C. A. Ingene and M. E. Parry, Mathematical Models of Distribution Channels, Springer, 2004. Google Scholar

[17]

Z. LiG. M. Stephen and G. Lai, Supplier encroachment under asymmetric information, Management Science, 60 (2014), 449-462.   Google Scholar

[18]

S. K. MukhopadhyayX. Zhu and X. Yue, Optimal contract design for mixed channels under information asymmetry, Production and Operations Management, 17 (2008), 641-650.   Google Scholar

[19]

J. Swaminathan and S. Tayur, Models for supply chains in e-business, Management Science, 49 (2003), 1387-1406.   Google Scholar

[20]

Y. WangL. Jiang and Z. Shen, Channel performance under consignment contract with revenue sharing, Management Science, 50 (2004), 34-47.   Google Scholar

[21]

T. Xiao and X. Qi, A two-stage supply chain with demand sensitive to price, delivery time, and reliability of delivery, Annals of Operations Research, 241 (2016), 475-496.  doi: 10.1007/s10479-012-1085-6.  Google Scholar

[22]

R. Yan, Pricing strategy for companies with mixed online and traditional reselling distribution markets, Journal of Production and Brand Management, 17 (2008), 48-56.   Google Scholar

[23]

R. L. Yan and Z. Pei, Information asymmetry, pricing strategy and firm's performance in the reseller multi-channel manufacturer supply chain, Journal of Business Research, 64 (2011), 377-384.   Google Scholar

[24]

H. M. YangC. Y. Chuang and K. P. Wong, Optimal fuel, power and load-based emissions trades for electric power supply chain equilibrium, IEEE Transactions on Power Systems, 27 (2012), 1147-1157.   Google Scholar

[25]

Z. YaoS. C. H. Leung and K. K. Lai, Manufacturer's revenue-sharing contract and retailer competition, European Journal of Operational Research, 186 (2008), 637-651.  doi: 10.1016/j.ejor.2007.01.049.  Google Scholar

[26]

C. C. Yu and C. S. Wang, A hybrid mining approach for optimizing returns policies in e-retail, Expert Systems with Applications, 35 (2008), 1575-1582.   Google Scholar

Figure 1.  Variation of prices with $\theta$ under asymmetric information case
Figure 2.  Variation of demands with $\theta$ under asymmetric information case
Figure 3.  Variation of the manufacturer's profit for various $B$ under asymmetric information case
Table 1.  The optimum policies under full and asymmetric information cases
$p_1$ $p_2$ $w$ $L_1$ $D_2$ D $\pi_m$ $\pi_r$ $\pi$
Full Information 630 510 185.9 192.793 326.126 518.919 244226 6188 250414
Asymmetric Information 592.771 510 141.225 326.952 212.091 539.043 230462 17799 248261
$p_1$ $p_2$ $w$ $L_1$ $D_2$ D $\pi_m$ $\pi_r$ $\pi$
Full Information 630 510 185.9 192.793 326.126 518.919 244226 6188 250414
Asymmetric Information 592.771 510 141.225 326.952 212.091 539.043 230462 17799 248261
[1]

Juliang Zhang, Jian Chen. Information sharing in a make-to-stock supply chain. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1169-1189. doi: 10.3934/jimo.2014.10.1169

[2]

René Aïd, Roxana Dumitrescu, Peter Tankov. The entry and exit game in the electricity markets: A mean-field game approach. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021012

[3]

David Cantala, Juan Sebastián Pereyra. Endogenous budget constraints in the assignment game. Journal of Dynamics & Games, 2015, 2 (3&4) : 207-225. doi: 10.3934/jdg.2015002

[4]

Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973

[5]

Guiyang Zhu. Optimal pricing and ordering policy for defective items under temporary price reduction with inspection errors and price sensitive demand. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021060

[6]

Haodong Chen, Hongchun Sun, Yiju Wang. A complementarity model and algorithm for direct multi-commodity flow supply chain network equilibrium problem. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2217-2242. doi: 10.3934/jimo.2020066

[7]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

[8]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1717-1746. doi: 10.3934/dcdss.2020451

[9]

Fioralba Cakoni, Shixu Meng, Jingni Xiao. A note on transmission eigenvalues in electromagnetic scattering theory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021025

[10]

Jinsen Guo, Yongwu Zhou, Baixun Li. The optimal pricing and service strategies of a dual-channel retailer under free riding. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021056

[11]

Akio Matsumoto, Ferenc Szidarovszky. Stability switching and its directions in cournot duopoly game with three delays. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021069

[12]

Chong Wang, Xu Chen. Fresh produce price-setting newsvendor with bidirectional option contracts. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021052

[13]

Mrinal K. Ghosh, Somnath Pradhan. A nonzero-sum risk-sensitive stochastic differential game in the orthant. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021025

[14]

Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035

[15]

Dan Wei, Shangjiang Guo. Qualitative analysis of a Lotka-Volterra competition-diffusion-advection system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2599-2623. doi: 10.3934/dcdsb.2020197

[16]

Yuyue Zhang, Jicai Huang, Qihua Huang. The impact of toxins on competition dynamics of three species in a polluted aquatic environment. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3043-3068. doi: 10.3934/dcdsb.2020219

[17]

M. Mahalingam, Parag Ravindran, U. Saravanan, K. R. Rajagopal. Two boundary value problems involving an inhomogeneous viscoelastic solid. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1351-1373. doi: 10.3934/dcdss.2017072

[18]

Fritz Gesztesy, Helge Holden, Johanna Michor, Gerald Teschl. The algebro-geometric initial value problem for the Ablowitz-Ladik hierarchy. Discrete & Continuous Dynamical Systems, 2010, 26 (1) : 151-196. doi: 10.3934/dcds.2010.26.151

[19]

W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349

[20]

Oleksandr Boichuk, Victor Feruk. Boundary-value problems for weakly singular integral equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021094

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (432)
  • HTML views (1659)
  • Cited by (1)

[Back to Top]