July  2018, 14(3): 1055-1083. doi: 10.3934/jimo.2017090

Optimal risk control and dividend strategies in the presence of two reinsurers: Variance premium principle

1. 

School of Finance, Nanjing University of Finance and Economics, Nanjing 210023, China

2. 

School of Statistics, East China Normal University, Shanghai 200241, China

* Corresponding author

Received  March 2017 Revised  June 2017 Published  September 2017

Fund Project: This work was supported by National Natural Science Foundation of China (71671082,71471081,11501211), Humanities and Social Sciences Project of the Ministry Education of China (15YJC910008), Natural Science Foundation of the Jiangsu Higher Education Institutions of China (15KJB110009), Shanghai Pujiang Program (15PJC026), Shanghai Philosophy Social Science Planning Office Project (2015EJB002), China Postdoctoral Science Foundation (2015M581564), Shanghai Chenguang Plan (15CG22).

This paper assumes that an insurer can control the dividend, refinancing and reinsurance strategies dynamically. Particularly, the reinsurance is provided by two reinsurers and the variance premium principle is applied in pricing insurance contracts. Using the optimal control method, we identify the optimal strategies for maximizing the insurance company's value. Meanwhile, the effects of transaction costs and terminal value at bankruptcy are investigated. The results turn out that the insurer should consider refinancing when and only when the transaction costs and terminal value are relatively low. Also, it should buy less reinsurance when the surplus increases, while the proportion of risk allocation between two reinsurers remains constant. When the dividend rate is unbounded, dividends should be paid according to the barrier strategy. When the dividend rate is restricted, dividends should be distributed according to the threshold strategy. Some examples are provided to illustrate the implementation of our results.

Citation: Dingjun Yao, Kun Fan. Optimal risk control and dividend strategies in the presence of two reinsurers: Variance premium principle. Journal of Industrial & Management Optimization, 2018, 14 (3) : 1055-1083. doi: 10.3934/jimo.2017090
References:
[1]

S. Asmussen and M. Taksar, Controlled diffusion models for optimal dividend pay-out, Insurance: Mathematics and Economics, 20 (1997), 1-15.  doi: 10.1016/S0167-6687(96)00017-0.  Google Scholar

[2]

L. BaiJ. Guo and H. Zhang, Optimal excess-of-loss reinsurance and dividend payments with both transaction costs and taxes, Quantitative Finance, 10 (2010), 1163-1172.  doi: 10.1080/14697680902968005.  Google Scholar

[3]

A. Barth and S. Moreno-Bromberg, Optimal risk and liquidity management with costly refinancing opportunities, Insurance: Mathematics and Economics, 57 (2014), 31-45.  doi: 10.1016/j.insmatheco.2014.05.001.  Google Scholar

[4]

A. CadenillasT. ChoulliM. Taksar and L. Zhang, Classical and impulse stochastic control for the optimization of the dividend and risk policies of an insurance firm, Mathematical Finance, 16 (2006), 181-202.  doi: 10.1111/j.1467-9965.2006.00267.x.  Google Scholar

[5]

M. ChenX. Peng and J. Guo, Optimal dividend problem with a nonlinear regular-singular stochastic control, Insurance: Mathematics and Economics, 52 (2013), 448-456.  doi: 10.1016/j.insmatheco.2013.02.010.  Google Scholar

[6]

M. Chen and K. C. Yuen, Optimal dividend and reinsurance in the presence of two reinsurers, Journal of Applied Probability, 53 (2016), 554-571.  doi: 10.1017/jpr.2016.20.  Google Scholar

[7] B. De Finetti, Su un'impostzione alternativa della teoria collettiva del rischio, in Transactions of the XVth International Congress of Actuaries, Congrès Internationald'Actuaires, New York, 1957.   Google Scholar
[8]

W. Fleming and H. Soner, Controlled Markov Process and Viscosity Solutions, Springer-Verlag, 1993.  Google Scholar

[9]

H. U. Gerber and E. S. W. Shiu, On optimal dividend strategies in the compound Poisson model, North American Actuarial Journal, 10 (2006), 76-93.  doi: 10.1080/10920277.2006.10596249.  Google Scholar

[10]

J. Grandell, Aspects of Risk Theory, Springer-Verlag, 1991. doi: 10.1007/978-1-4613-9058-9.  Google Scholar

[11]

H. Guan and Z. Liang, Viscosity solution and impulse control of the diffusion model with reinsurance and fixed transaction costs, Insurance: Mathematics and Economics, 54 (2014), 109-122.  doi: 10.1016/j.insmatheco.2013.11.003.  Google Scholar

[12]

L. He and Z. Liang, Optimal financing and dividend control of the insurance company with fixed and proportional transaction costs, Insurance: Mathematics and Economics, 44 (2009), 88-94.  doi: 10.1016/j.insmatheco.2008.10.001.  Google Scholar

[13]

B. H$\phi $gaard and M. Taksar, Controlling risk exposure and dividends payout schemes: Insurance company example, Mathematical Finance, 9 (1999), 153-182.  doi: 10.1111/1467-9965.00066.  Google Scholar

[14]

Z. Liang and V. Young, Dividends and reinsurance under a penalty for ruin, Insurance: Mathematics and Economics, 50 (2012), 437-445.  doi: 10.1016/j.insmatheco.2012.02.005.  Google Scholar

[15]

W. Liu and Y. Hu, Optimal financing and dividend control of the insurance company with excess-of-loss reinsurance policy, Statistics and Probability Letters, 84 (2014), 121-130.  doi: 10.1016/j.spl.2013.09.034.  Google Scholar

[16]

R. L. Loeffen, An optimal dividends problem with transaction costs for spectrally negative L$\acute{e}$vy processes, Insurance: Mathematics and Economics, 45 (2009), 41-48.  doi: 10.1016/j.insmatheco.2009.03.002.  Google Scholar

[17]

A. L$φ$kka and M. Zervos, Optimal dividend and issuance of equity policies in the presence of proportional costs, Insurance: Mathematics and Economics, 42 (2008), 954-961.  doi: 10.1016/j.insmatheco.2007.10.013.  Google Scholar

[18]

H. Meng, Optimal impulse control with variance premium principle, Science China Mathematics (in Chinese), 43 (2013), 925-939.   Google Scholar

[19]

H. Meng and T. K. Siu, On optimal reinsurance, dividend and reinvestment strategies, Economic Modelling, 28 (2011), 211-218.  doi: 10.1016/j.econmod.2010.09.009.  Google Scholar

[20]

X. PengM. Chen and J. Guo, Optimal dividend and equity issuance problem with proportional and fixed transaction costs, Insurance: Mathematics and Economics, 51 (2012), 576-585.  doi: 10.1016/j.insmatheco.2012.08.004.  Google Scholar

[21]

M. Taksar, Dependence of the optimal risk control decisions on the terminal value for a financial corporation, Annals of Operations Research, 98 (2000), 89-99.  doi: 10.1023/A:1019239920624.  Google Scholar

[22]

J. Xu and M. Zhou, Optimal risk control and dividend distribution policies for a diffusion model with terminal value, Mathematical and Computer Modelling, 56 (2012), 180-190.  doi: 10.1016/j.mcm.2011.12.041.  Google Scholar

[23]

D. YaoH. Yang and R. Wang, Optimal risk and dividend control problem with fixed costs and salvage value: Variance premium principle, Economic Modelling, 37 (2014), 53-64.  doi: 10.1016/j.econmod.2013.10.026.  Google Scholar

[24]

M. Zhou and K. C. Yuen, Optimal reinsurance and dividend for a diffusion model with capital injection: Variance premium principle, Economic Modelling, 29 (2012), 198-207.  doi: 10.1016/j.econmod.2011.09.007.  Google Scholar

show all references

References:
[1]

S. Asmussen and M. Taksar, Controlled diffusion models for optimal dividend pay-out, Insurance: Mathematics and Economics, 20 (1997), 1-15.  doi: 10.1016/S0167-6687(96)00017-0.  Google Scholar

[2]

L. BaiJ. Guo and H. Zhang, Optimal excess-of-loss reinsurance and dividend payments with both transaction costs and taxes, Quantitative Finance, 10 (2010), 1163-1172.  doi: 10.1080/14697680902968005.  Google Scholar

[3]

A. Barth and S. Moreno-Bromberg, Optimal risk and liquidity management with costly refinancing opportunities, Insurance: Mathematics and Economics, 57 (2014), 31-45.  doi: 10.1016/j.insmatheco.2014.05.001.  Google Scholar

[4]

A. CadenillasT. ChoulliM. Taksar and L. Zhang, Classical and impulse stochastic control for the optimization of the dividend and risk policies of an insurance firm, Mathematical Finance, 16 (2006), 181-202.  doi: 10.1111/j.1467-9965.2006.00267.x.  Google Scholar

[5]

M. ChenX. Peng and J. Guo, Optimal dividend problem with a nonlinear regular-singular stochastic control, Insurance: Mathematics and Economics, 52 (2013), 448-456.  doi: 10.1016/j.insmatheco.2013.02.010.  Google Scholar

[6]

M. Chen and K. C. Yuen, Optimal dividend and reinsurance in the presence of two reinsurers, Journal of Applied Probability, 53 (2016), 554-571.  doi: 10.1017/jpr.2016.20.  Google Scholar

[7] B. De Finetti, Su un'impostzione alternativa della teoria collettiva del rischio, in Transactions of the XVth International Congress of Actuaries, Congrès Internationald'Actuaires, New York, 1957.   Google Scholar
[8]

W. Fleming and H. Soner, Controlled Markov Process and Viscosity Solutions, Springer-Verlag, 1993.  Google Scholar

[9]

H. U. Gerber and E. S. W. Shiu, On optimal dividend strategies in the compound Poisson model, North American Actuarial Journal, 10 (2006), 76-93.  doi: 10.1080/10920277.2006.10596249.  Google Scholar

[10]

J. Grandell, Aspects of Risk Theory, Springer-Verlag, 1991. doi: 10.1007/978-1-4613-9058-9.  Google Scholar

[11]

H. Guan and Z. Liang, Viscosity solution and impulse control of the diffusion model with reinsurance and fixed transaction costs, Insurance: Mathematics and Economics, 54 (2014), 109-122.  doi: 10.1016/j.insmatheco.2013.11.003.  Google Scholar

[12]

L. He and Z. Liang, Optimal financing and dividend control of the insurance company with fixed and proportional transaction costs, Insurance: Mathematics and Economics, 44 (2009), 88-94.  doi: 10.1016/j.insmatheco.2008.10.001.  Google Scholar

[13]

B. H$\phi $gaard and M. Taksar, Controlling risk exposure and dividends payout schemes: Insurance company example, Mathematical Finance, 9 (1999), 153-182.  doi: 10.1111/1467-9965.00066.  Google Scholar

[14]

Z. Liang and V. Young, Dividends and reinsurance under a penalty for ruin, Insurance: Mathematics and Economics, 50 (2012), 437-445.  doi: 10.1016/j.insmatheco.2012.02.005.  Google Scholar

[15]

W. Liu and Y. Hu, Optimal financing and dividend control of the insurance company with excess-of-loss reinsurance policy, Statistics and Probability Letters, 84 (2014), 121-130.  doi: 10.1016/j.spl.2013.09.034.  Google Scholar

[16]

R. L. Loeffen, An optimal dividends problem with transaction costs for spectrally negative L$\acute{e}$vy processes, Insurance: Mathematics and Economics, 45 (2009), 41-48.  doi: 10.1016/j.insmatheco.2009.03.002.  Google Scholar

[17]

A. L$φ$kka and M. Zervos, Optimal dividend and issuance of equity policies in the presence of proportional costs, Insurance: Mathematics and Economics, 42 (2008), 954-961.  doi: 10.1016/j.insmatheco.2007.10.013.  Google Scholar

[18]

H. Meng, Optimal impulse control with variance premium principle, Science China Mathematics (in Chinese), 43 (2013), 925-939.   Google Scholar

[19]

H. Meng and T. K. Siu, On optimal reinsurance, dividend and reinvestment strategies, Economic Modelling, 28 (2011), 211-218.  doi: 10.1016/j.econmod.2010.09.009.  Google Scholar

[20]

X. PengM. Chen and J. Guo, Optimal dividend and equity issuance problem with proportional and fixed transaction costs, Insurance: Mathematics and Economics, 51 (2012), 576-585.  doi: 10.1016/j.insmatheco.2012.08.004.  Google Scholar

[21]

M. Taksar, Dependence of the optimal risk control decisions on the terminal value for a financial corporation, Annals of Operations Research, 98 (2000), 89-99.  doi: 10.1023/A:1019239920624.  Google Scholar

[22]

J. Xu and M. Zhou, Optimal risk control and dividend distribution policies for a diffusion model with terminal value, Mathematical and Computer Modelling, 56 (2012), 180-190.  doi: 10.1016/j.mcm.2011.12.041.  Google Scholar

[23]

D. YaoH. Yang and R. Wang, Optimal risk and dividend control problem with fixed costs and salvage value: Variance premium principle, Economic Modelling, 37 (2014), 53-64.  doi: 10.1016/j.econmod.2013.10.026.  Google Scholar

[24]

M. Zhou and K. C. Yuen, Optimal reinsurance and dividend for a diffusion model with capital injection: Variance premium principle, Economic Modelling, 29 (2012), 198-207.  doi: 10.1016/j.econmod.2011.09.007.  Google Scholar

Figure 1.  The influences of $\beta_1$ on $u(x)$ and $u_1(x)$
Figure 2.  The influences of the refinancing costs on u1(x)
Figure 3.  The influences of P on u(x) and u1(x)
Figure 4.  The influences of M on v(x) and v1(x)
Table 1.  The influence of β1 on optimal strategy
$\beta_2=1.1, \lambda=0.5, \theta_0=0.24, \theta_1=1, \theta_2=0.8, \sigma^2=2, \delta=0.05, P=4, K=0.2$
${ \beta_1}\uparrow$ $q^{\pi^*}(0)\downarrow$ $h_0\uparrow$ $q_1^{\pi^*}(0)\uparrow$ $h_1\downarrow$ $\tilde{\xi}_0\uparrow$ $u'(0)\uparrow$ $I(\xi_0)\uparrow$ Re
$0.70$ 0.6409 3.2729 - - - 1.2438 0.0184 n
$0.75$ 0.6116 3.4762 - - - 1.4845 0.1096 n
$0.80$ 0.5892 3.6368 0.6035 3.5331 0.8915 1.7414 0.2610 y
$0.85$ 0.5719 3.7665 0.6236 3.3919 0.9531 2.0110 0.4598 y
$0.90$ 0.5582 3.8730 0.6455 3.2418 1.0286 2.2903 0.6979 y
$0.95$ 0.5472 3.9621 0.6695 3.0787 1.1255 2.5775 0.9700 y
$\beta_2=1.1, \lambda=0.5, \theta_0=0.24, \theta_1=1, \theta_2=0.8, \sigma^2=2, \delta=0.05, P=4, K=0.2$
${ \beta_1}\uparrow$ $q^{\pi^*}(0)\downarrow$ $h_0\uparrow$ $q_1^{\pi^*}(0)\uparrow$ $h_1\downarrow$ $\tilde{\xi}_0\uparrow$ $u'(0)\uparrow$ $I(\xi_0)\uparrow$ Re
$0.70$ 0.6409 3.2729 - - - 1.2438 0.0184 n
$0.75$ 0.6116 3.4762 - - - 1.4845 0.1096 n
$0.80$ 0.5892 3.6368 0.6035 3.5331 0.8915 1.7414 0.2610 y
$0.85$ 0.5719 3.7665 0.6236 3.3919 0.9531 2.0110 0.4598 y
$0.90$ 0.5582 3.8730 0.6455 3.2418 1.0286 2.2903 0.6979 y
$0.95$ 0.5472 3.9621 0.6695 3.0787 1.1255 2.5775 0.9700 y
Table 2.  The influence of β2 on optimal strategy
$\beta_1=0.8, \lambda=0.5, \theta_0=0.24, \theta_1=1, \theta_2=0.8, \sigma^2=2, \delta=0.05, P=4, K=0.2$
${ \beta_2}\uparrow$ $q^{\pi^*}(0)\equiv$ $h_0\equiv$ $q_1^{\pi^*}(0)\downarrow$ $h_1\uparrow$ $\tilde{\xi}_0\downarrow$ $u'(0)\equiv$ $I(\xi_0)\downarrow$ Re
$1.05$ 0.5892 3.6368 - - - 1.7414 0.3145 n
$1.10$ 0.5892 3.6368 - - - 1.7414 0.2610 n
$1.15$ 0.5892 - - - 3.6368 1.7414 0.2146 n
$1.20$ 0.5892 3.6368 0.6160 3.4445 0.9557 1.7414 0.1743 y
$1.25$ 0.5892 3.6368 0.6035 3.5331 0.8915 1.7414 0.1395 y
$1.30$ 0.5892 3.6368 0.5927 3.6116 0.8387 1.7414 0.1095 y
$\beta_1=0.8, \lambda=0.5, \theta_0=0.24, \theta_1=1, \theta_2=0.8, \sigma^2=2, \delta=0.05, P=4, K=0.2$
${ \beta_2}\uparrow$ $q^{\pi^*}(0)\equiv$ $h_0\equiv$ $q_1^{\pi^*}(0)\downarrow$ $h_1\uparrow$ $\tilde{\xi}_0\downarrow$ $u'(0)\equiv$ $I(\xi_0)\downarrow$ Re
$1.05$ 0.5892 3.6368 - - - 1.7414 0.3145 n
$1.10$ 0.5892 3.6368 - - - 1.7414 0.2610 n
$1.15$ 0.5892 - - - 3.6368 1.7414 0.2146 n
$1.20$ 0.5892 3.6368 0.6160 3.4445 0.9557 1.7414 0.1743 y
$1.25$ 0.5892 3.6368 0.6035 3.5331 0.8915 1.7414 0.1395 y
$1.30$ 0.5892 3.6368 0.5927 3.6116 0.8387 1.7414 0.1095 y
Table 3.  The influence of K on optimal strategy
$\beta_1=0.8, \beta_2=1.1, \lambda=0.5, \theta_0=0.24, \theta_1=1, \theta_2=0.8, \sigma^2=2, \delta=0.05, P=4$
$K\uparrow$ $q^{\pi^*}(0)\equiv$ $h_0\equiv$ $q_1^{\pi^*}(0)\downarrow$ $h_1\uparrow$ $\tilde{\xi}_0\uparrow$ $u'(0)\equiv$ $I(\xi_0)\equiv$ Re
$0.05$ 0.5892 3.6368 0.6625 3.1266 0.4850 1.7414 0.2610 y
$0.10$ 0.5892 3.6368 0.6364 3.3034 0.6619 1.7414 0.2610 y
$0.15$ 0.5892 3.6368 0.6180 3.4308 0.7893 1.7414 0.2610 y
$0.20$ 0.5892 3.6368 0.6035 3.5331 0.8915 1.7414 0.2610 y
$0.25$ 0.5892 3.6368 0.5916 3.6195 0.9779 1.7414 0.2610 y
$0.30$ 0.5892 - - - 3.6368 1.7414 0.2610 n
$\beta_1=0.8, \beta_2=1.1, \lambda=0.5, \theta_0=0.24, \theta_1=1, \theta_2=0.8, \sigma^2=2, \delta=0.05, P=4$
$K\uparrow$ $q^{\pi^*}(0)\equiv$ $h_0\equiv$ $q_1^{\pi^*}(0)\downarrow$ $h_1\uparrow$ $\tilde{\xi}_0\uparrow$ $u'(0)\equiv$ $I(\xi_0)\equiv$ Re
$0.05$ 0.5892 3.6368 0.6625 3.1266 0.4850 1.7414 0.2610 y
$0.10$ 0.5892 3.6368 0.6364 3.3034 0.6619 1.7414 0.2610 y
$0.15$ 0.5892 3.6368 0.6180 3.4308 0.7893 1.7414 0.2610 y
$0.20$ 0.5892 3.6368 0.6035 3.5331 0.8915 1.7414 0.2610 y
$0.25$ 0.5892 3.6368 0.5916 3.6195 0.9779 1.7414 0.2610 y
$0.30$ 0.5892 - - - 3.6368 1.7414 0.2610 n
Table 4.  The influence of P on optimal strategy
$\beta_1=0.8, \beta_2=1.1, \lambda=0.5, \theta_0=0.24, \theta_1=1, \theta_2=0.8, \sigma^2=2, \delta=0.05, K=0.2$
$P\uparrow$ $q^{\pi^*}(0)\uparrow$ $h_0\downarrow$ $q_1^{\pi^*}(0)\equiv$ $h_1\equiv$ $\tilde{\xi}_0\equiv$ $u'(0)\downarrow$ $I(\xi_0)\downarrow$ Re
$-4$ 0.4368 5.5029 0.6035 3.5331 0.8915 9.6961 6.2083 y
$-2$ 0.4449 5.2679 0.6035 3.5331 0.8915 7.4376 4.4668 y
$0$ 0.4600 4.9497 0.6035 3.5331 0.8915 5.2780 2.8168 y
$2$ 0.4940 4.4728 0.6035 3.5331 0.8915 3.3073 1.3414 y
$4$ 0.5892 3.6368 0.6035 3.5331 0.8915 1.7414 0.2610 y
$6$ 0.8209 2.0027 - - - 0.9351 - n
$\beta_1=0.8, \beta_2=1.1, \lambda=0.5, \theta_0=0.24, \theta_1=1, \theta_2=0.8, \sigma^2=2, \delta=0.05, K=0.2$
$P\uparrow$ $q^{\pi^*}(0)\uparrow$ $h_0\downarrow$ $q_1^{\pi^*}(0)\equiv$ $h_1\equiv$ $\tilde{\xi}_0\equiv$ $u'(0)\downarrow$ $I(\xi_0)\downarrow$ Re
$-4$ 0.4368 5.5029 0.6035 3.5331 0.8915 9.6961 6.2083 y
$-2$ 0.4449 5.2679 0.6035 3.5331 0.8915 7.4376 4.4668 y
$0$ 0.4600 4.9497 0.6035 3.5331 0.8915 5.2780 2.8168 y
$2$ 0.4940 4.4728 0.6035 3.5331 0.8915 3.3073 1.3414 y
$4$ 0.5892 3.6368 0.6035 3.5331 0.8915 1.7414 0.2610 y
$6$ 0.8209 2.0027 - - - 0.9351 - n
Table 5.  The influence of M on optimal strategy
$\beta_1=0.8, \beta_2=1.1, \lambda=0.5, \theta_0=0.24, \theta_1=1, \theta_2=0.8, \sigma^2=2, \delta=0.05, K=0.2, P=4$
$M\uparrow$ $q^{\pi^*}(0)\downarrow$ $d_0\uparrow$ $q_1^{\pi^*}(0)\uparrow$ $d_1\uparrow$ $\tilde{\zeta}_0\uparrow$ $v'(0)\uparrow$ $J(\zeta_0)\uparrow$ Re
$0.5$ 0.6036 2.3715 - - - 1.5666 0.1530 n
$1$ 0.5918 3.0719 0.6011 3.0056 0.8841 1.7066 0.2380 y
$5$ 0.5893 3.5344 0.6035 3.4318 0.8913 1.7403 0.2602 y
$10$ 0.5892 3.5862 0.6035 3.4827 0.8915 1.7411 0.2608 y
$100$ 0.5892 3.6318 0.6035 3.5280 0.8915 1.7414 0.2610 y
$1000$ 0.5892 3.6363 0.6035 3.5325 0.8915 1.7414 0.2610 y
$\beta_1=0.8, \beta_2=1.1, \lambda=0.5, \theta_0=0.24, \theta_1=1, \theta_2=0.8, \sigma^2=2, \delta=0.05, K=0.2, P=4$
$M\uparrow$ $q^{\pi^*}(0)\downarrow$ $d_0\uparrow$ $q_1^{\pi^*}(0)\uparrow$ $d_1\uparrow$ $\tilde{\zeta}_0\uparrow$ $v'(0)\uparrow$ $J(\zeta_0)\uparrow$ Re
$0.5$ 0.6036 2.3715 - - - 1.5666 0.1530 n
$1$ 0.5918 3.0719 0.6011 3.0056 0.8841 1.7066 0.2380 y
$5$ 0.5893 3.5344 0.6035 3.4318 0.8913 1.7403 0.2602 y
$10$ 0.5892 3.5862 0.6035 3.4827 0.8915 1.7411 0.2608 y
$100$ 0.5892 3.6318 0.6035 3.5280 0.8915 1.7414 0.2610 y
$1000$ 0.5892 3.6363 0.6035 3.5325 0.8915 1.7414 0.2610 y
[1]

Vo Van Au, Mokhtar Kirane, Nguyen Huy Tuan. On a terminal value problem for a system of parabolic equations with nonlinear-nonlocal diffusion terms. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1579-1613. doi: 10.3934/dcdsb.2020174

[2]

Tong Peng. Designing prorated lifetime warranty strategy for high-value and durable products under two-dimensional warranty. Journal of Industrial & Management Optimization, 2021, 17 (2) : 953-970. doi: 10.3934/jimo.2020006

[3]

Giuseppe Capobianco, Tom Winandy, Simon R. Eugster. The principle of virtual work and Hamilton's principle on Galilean manifolds. Journal of Geometric Mechanics, 2021  doi: 10.3934/jgm.2021002

[4]

Zhiyan Ding, Qin Li, Jianfeng Lu. Ensemble Kalman Inversion for nonlinear problems: Weights, consistency, and variance bounds. Foundations of Data Science, 2020  doi: 10.3934/fods.2020018

[5]

Yiling Chen, Baojun Bian. Optimal dividend policy in an insurance company with contagious arrivals of claims. Mathematical Control & Related Fields, 2021, 11 (1) : 1-22. doi: 10.3934/mcrf.2020024

[6]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, 2021, 14 (1) : 89-113. doi: 10.3934/krm.2020050

[7]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[8]

Yu Yuan, Zhibin Liang, Xia Han. Optimal investment and reinsurance to minimize the probability of drawdown with borrowing costs. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021003

[9]

Xin Zhang, Jie Xiong, Shuaiqi Zhang. Optimal reinsurance-investment and dividends problem with fixed transaction costs. Journal of Industrial & Management Optimization, 2021, 17 (2) : 981-999. doi: 10.3934/jimo.2020008

[10]

Nan Zhang, Linyi Qian, Zhuo Jin, Wei Wang. Optimal stop-loss reinsurance with joint utility constraints. Journal of Industrial & Management Optimization, 2021, 17 (2) : 841-868. doi: 10.3934/jimo.2020001

[11]

Wenyuan Wang, Ran Xu. General drawdown based dividend control with fixed transaction costs for spectrally negative Lévy risk processes. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020179

[12]

Jiannan Zhang, Ping Chen, Zhuo Jin, Shuanming Li. Open-loop equilibrium strategy for mean-variance portfolio selection: A log-return model. Journal of Industrial & Management Optimization, 2021, 17 (2) : 765-777. doi: 10.3934/jimo.2019133

[13]

Marek Macák, Róbert Čunderlík, Karol Mikula, Zuzana Minarechová. Computational optimization in solving the geodetic boundary value problems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 987-999. doi: 10.3934/dcdss.2020381

[14]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[15]

Shan Liu, Hui Zhao, Ximin Rong. Time-consistent investment-reinsurance strategy with a defaultable security under ambiguous environment. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021015

[16]

Zhongbao Zhou, Yanfei Bai, Helu Xiao, Xu Chen. A non-zero-sum reinsurance-investment game with delay and asymmetric information. Journal of Industrial & Management Optimization, 2021, 17 (2) : 909-936. doi: 10.3934/jimo.2020004

[17]

Nicolas Rougerie. On two properties of the Fisher information. Kinetic & Related Models, 2021, 14 (1) : 77-88. doi: 10.3934/krm.2020049

[18]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[19]

Vo Van Au, Hossein Jafari, Zakia Hammouch, Nguyen Huy Tuan. On a final value problem for a nonlinear fractional pseudo-parabolic equation. Electronic Research Archive, 2021, 29 (1) : 1709-1734. doi: 10.3934/era.2020088

[20]

Nguyen Huu Can, Nguyen Huy Tuan, Donal O'Regan, Vo Van Au. On a final value problem for a class of nonlinear hyperbolic equations with damping term. Evolution Equations & Control Theory, 2021, 10 (1) : 103-127. doi: 10.3934/eect.2020053

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (139)
  • HTML views (972)
  • Cited by (2)

Other articles
by authors

[Back to Top]