[1]
|
R. S. Burachik and A. N. Iusem, A generalized proximal point algorithm for the variational inequality problem in a Hilbert space, SIAM J. Optim., 8 (1998), 197-216.
doi: 10.1137/S1052623495286302.
|
[2]
|
E. Carrizosa, E. Conde, M. Munõz and J. Puerto, Simpson points in planar problems with locational constraints -the polyhedral gauge case, Math. Oper. Res., 22 (1997), 297-300.
doi: 10.1287/moor.22.2.291.
|
[3]
|
M. Cera, J. A. Mesa, F. A. Ortega and F. Plastria, Locating a central hunter on the plane, J. Optim. Theory Appl., 136 (2008), 155-166.
doi: 10.1007/s10957-007-9293-y.
|
[4]
|
F. Daneshzand and R. Shoeleh, Multifacility location problem, in Facility Location: Concepts, Models, Algorithms and Case Studies, R.Z. Farahani and M. Hekmatfar (eds.), Springer, Berlin, (2009), 69-92.
|
[5]
|
Z. Drezner,
Facility Location: A Survey of Applications and Methods, Springer, New York, 1995.
doi: 10.1007/978-1-4612-5355-6.
|
[6]
|
Z. Drezner and H. W. Hamacher,
Facility Location: Applications and Theory, Springer-Verlag, Berlin, 2002.
doi: 10.1007/978-3-642-56082-8.
|
[7]
|
R. Durier, On Pareto optima, the Fermat-Weber problem and polyhedral gauges, Math. Program., 47 (1990), 65-79.
doi: 10.1007/BF01580853.
|
[8]
|
B. C. Eaves, On the basic theorem of complememtarity, Math. Program., 1 (1971), 68-75.
doi: 10.1007/BF01584073.
|
[9]
|
J. W. Eyster, J. A. White and W. W. Wierwille, On solving multifacility location problems using a hyperboloid approximation procedure, AIIE Trans., 5 (1973), 275-280.
doi: 10.1080/05695557308974912.
|
[10]
|
F. Facchinei and J. S. Pang,
Finite-Dimensional Variational Inequalities and Complementarity Problems, Springer, New York, 2003.
|
[11]
|
M. C. Ferris and C. Kanzow, Engineering and economic applications of complementarity problems, SIAM Review, 39 (1997), 669-713.
doi: 10.1137/S0036144595285963.
|
[12]
|
B. S. He, A new method for a class of linear variational inequalities, Math. Program., 66 (1994), 137-144.
doi: 10.1007/BF01581141.
|
[13]
|
B. S. He, A modified projection and contraction method for a class of linear complementarity problems, J. Comput. Math., 14 (1996), 54-63.
|
[14]
|
B. S. He, X. M. Yuan and W. X. Zhang, A customized proximal point algorithm for convex minimization with linear constraints, Comput. Optim. Appl., 56 (2013), 559-572.
doi: 10.1007/s10589-013-9564-5.
|
[15]
|
I. N. Katz and S. R. Vogl, A Weiszfeld algorithm for the solution of an asymmetric extension of the generalized Fermat location problem, Comput. Math. Appl., 59 (2010), 399-410.
doi: 10.1016/j.camwa.2009.07.007.
|
[16]
|
R. F. Love and J. G. Morris, Mathematical models of road travel distances, Manag. Sci., 25 (1979), 130-139.
doi: 10.1287/mnsc.25.2.130.
|
[17]
|
R. F. Love and J. G. Morris, On estimating road distances by mathematical functions, Euro. J. Oper. Res., 36 (1988), 251-253.
doi: 10.1016/0377-2217(88)90431-6.
|
[18]
|
R. F. Love, J. G. Morris and G. O. Wesolowsky,
Facilities Location: Models and Methods, North-Holland, Amsterdam, 1988.
|
[19]
|
B. Martinet, Regularision d'inéquations variationnelles par approximations successive, Revue Francaise d'Automatique et Informatique Recherche Opérationnelle, 4 (1970), 154-158.
|
[20]
|
W. Miehle, Link length minimization in networks, Oper. Res., 6 (1958), 232-243.
doi: 10.1287/opre.6.2.232.
|
[21]
|
H. Minkowski,
Theorie der konvexen Körper, Gesammelte Abhandlungen, Teubner, Berlin, 1911.
|
[22]
|
S. Nickel, Restricted center problems under polyhedral gauges, Euro. J. Oper. Res., 104 (1998), 343-357.
doi: 10.1016/S0377-2217(97)00189-6.
|
[23]
|
L. M. Ostresh, The multifacility location problem: Applications and descent theorems, J. Regional Sci., 17 (1977), 409-419.
doi: 10.1111/j.1467-9787.1977.tb00511.x.
|
[24]
|
F. Plastria, Asymmetric distances, semidirected networks and majority in Fermat-Weber problems, Ann. Oper. Res., 167 (2009), 121-155.
doi: 10.1007/s10479-008-0351-0.
|
[25]
|
F. Plastria, The Weiszfeld algorithm: proof, amendments, and extensions, in Foundations of Location Analysis, H.A. Eiselt and V. Marianov (eds.), Springer, US, 155 (2011), 357-389.
doi: 10.1007/978-1-4419-7572-0_16.
|
[26]
|
J. B. Rosen and G. L. Xue, On the convergence of Miehle's algorithm for the Euclidean multifacility location problem, Oper. Res., 40 (1992), 188-191.
doi: 10.1287/opre.40.1.188.
|
[27]
|
J. B. Rosen and G. L. Xue, On the convergence of a hyperboloid approximation procedure for the perturbed Euclidean multifacility location problem, Oper. Res., 41 (1993), 1164-1171.
doi: 10.1287/opre.41.6.1164.
|
[28]
|
M. V. Solodov and P. Tseng, Modified projection-type methods for monotone variational inequalities, SIAM J. Control Optim., 34 (1996), 1814-1830.
doi: 10.1137/S0363012994268655.
|
[29]
|
H. Uzawa, Iterative methods for concave programming, in Studies in Linear and Nonlinear Programming, K.J. Arrow, L. Hurwicz and H. Uzawa (eds.), Stanford University Press, Stanford, (1958), 154-165.
|
[30]
|
J. E. Ward and R. E. Wendell, A new norm for measuring distance which yields linear location problems, Oper. Res., 28 (1980), 836-844.
|
[31]
|
J. E. Ward and R. E. Wendell, Using block norms for location modelling, Oper. Res., 33 (1985), 1074-1090.
doi: 10.1287/opre.33.5.1074.
|
[32]
|
E. Weiszfeld, Sur le point pour lequel la somme des distances de n points donnés est minimum, Tohoku Math. J., 43 (1937), 355-386.
|
[33]
|
C. Witzgall, Optimal location of a central facility, mathematical models and concepts, Report 8388, National Bureau of Standards, Washington DC, US, 1964.
|