• Previous Article
    Modeling and analyzing the chaotic behavior in supply chain networks: a control theoretic approach
  • JIMO Home
  • This Issue
  • Next Article
    A variational inequality approach for constrained multifacility Weber problem under gauge
July  2018, 14(3): 1105-1122. doi: 10.3934/jimo.2018001

Portfolio procurement policies for budget-constrained supply chains with option contracts and external financing

1. 

School of Management and Economics, University of Electronic Science and Technology of China, Chengdu, China

2. 

Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong

3. 

Department of Marketing and International Business, Valdosta State University, Valdosta, USA

* Corresponding author: Xu Chen, E-mail: xchenxchen@263.net, Tel: +86-28-83206622

Received  October 2015 Revised  September 2017 Published  January 2018

This study investigates a budget-constrained retailer's optimal financing and portfolio order policies in a supply chain with option contracts. To this end, we develop two analytical models: a basic model with wholesale price contracts as the benchmark and a model with option contracts. Each model considers both the financing scenario and the no-financing scenario. Our analyses show that the retailer uses wholesale price contracts for procurement, instead of option contracts, when its budget is extremely tight. The retailer starts to use a combination of these two types of contracts when the budget constraint is relieved. As the budget increases, the retailer adjusts the procurement ratio through both types until it can implement the optimal ordering policy with an adequate budget. In addition, the condition for seeking external financing is determined by the retailer's initial budget, financing cost, and profit margin.

Citation: Benyong Hu, Xu Chen, Felix T. S. Chan, Chao Meng. Portfolio procurement policies for budget-constrained supply chains with option contracts and external financing. Journal of Industrial & Management Optimization, 2018, 14 (3) : 1105-1122. doi: 10.3934/jimo.2018001
References:
[1]

D. Barnes-SchusterY. Bassok and R. Anupindi, Coordination and flexibility in supply contracts with options, Manufacturing & Service Operations Management, 4 (2002), 171-207.  doi: 10.1287/msom.4.3.171.7754.  Google Scholar

[2]

A. Burnetas and P. Ritchken, Option pricing with downward-sloping demand curves: The case of supply chain options, Management Science, 51 (2005), 566-580.  doi: 10.1287/mnsc.1040.0342.  Google Scholar

[3]

J. A. Buzacott and R. Q. Zhang, Inventory management with asset-based financing, Management Science, 50 (2004), 1274-1292.  doi: 10.1287/mnsc.1040.0278.  Google Scholar

[4]

G. P. Cachon and M. A. Lariviere, Capacity choice and allocation: Strategic behavior and supply chain performance, Management Science, 45 (1999), 1091-1108.  doi: 10.1287/mnsc.45.8.1091.  Google Scholar

[5]

R. Caldentey and X. F. Chen, Handbook of Integrated Risk Management in Global Supply Chains: The Role of Financing Service in Procurement Contracts (eds. P. Kouvelis, O. Boyabatli, L. Dong and R. Li), John Wiley & Sons, Inc., New York, 2011. Google Scholar

[6]

R. Caldentey and M. B. Haugh, Supply contracts with financial hedging, Operations Research, 57 (2009), 47-65.  doi: 10.1287/opre.1080.0521.  Google Scholar

[7]

Y. K. Che and I. Gale, The optimal mechanism for selling to a budget-constrained buyer, Journal of Economic Theory, 92 (2000), 198-233.  doi: 10.1006/jeth.1999.2639.  Google Scholar

[8]

X. Chen and Z. J. Shen, An analysis of a supply chain with options contracts and service requirements, IIE Transactions, 44 (2012), 805-819.  doi: 10.1080/0740817X.2011.649383.  Google Scholar

[9]

X. ChenG. Hao and L. Li, Channel coordination with a loss-averse retailer and option contracts, International Journal of Production Economics, 150 (2014), 52-57.  doi: 10.1016/j.ijpe.2013.12.004.  Google Scholar

[10]

X. Chen and X. Wang, Free or bundled: Channel selection decisions under different power structures, OMEGA-International Journal of Management Science, 53 (2015), 11-20.  doi: 10.1016/j.omega.2014.11.008.  Google Scholar

[11]

X. ChenX. Wang and X. Jiang, The impact of power structure on retail service supply chain with an O2O mixed channel, Journal of the Operational Research Society, 67 (2016), 294-301.  doi: 10.1057/jors.2015.6.  Google Scholar

[12]

X. ChenX. Wang and H. Chan, Manufacturer and retailer coordination for environmental and economic competitiveness: A power perspective, Transportation Research Part E: Logistics and Transportation Review, 97 (2017), 268-281.  doi: 10.1016/j.tre.2016.11.007.  Google Scholar

[13]

X. ChenN. Wan and X. Wang, Flexibility and coordination in a supply chain with bidirectional option contracts and service requirement, International Journal of Production Economics, 193 (2017), 183-192.  doi: 10.1016/j.ijpe.2017.07.013.  Google Scholar

[14]

X. ChenX. Wang and K. Gong, The effect of bidimensional power structure on supply chain decisions and performance, IEEE Transactions on Systems Man and Cybernetics: Systems, PP (2017), 1-16.  doi: 10.1109/TSMC.2017.2704445.  Google Scholar

[15]

X. Chen and G. Wan, The effect of financing on a budget-constrained supply chain under wholesale price contract, Asia-Pacific Journal of Operational Research, 28 (2011), 457-485.  doi: 10.1142/S0217595911003193.  Google Scholar

[16]

K. Chen and T. Xiao, Reordering policy and coordination of a supply chain with a loss-averse retailer, Journal of Industrial and Management Optimization, 9 (2013), 827-853.  doi: 10.3934/jimo.2013.9.827.  Google Scholar

[17]

M. Dada and Q. Hu, Financing newsvendor inventory, Operations Research Letters, 36 (2008), 569-573.  doi: 10.1016/j.orl.2008.06.004.  Google Scholar

[18]

K. L. Donohue, Efficient supply contracts for fashion goods with forecast updating and two production modes, Management Science, 46 (2000), 1397-1411.  doi: 10.1287/mnsc.46.11.1397.12088.  Google Scholar

[19]

G. Eppen and A. Iyer, Backup agreements in fashion buying-the value of upstream flexibility, Management Science, 43 (1997), 1469-1484.  doi: 10.1287/mnsc.43.11.1469.  Google Scholar

[20]

M. Erkoc and S. D. Wu, Managing high-tech capacity expansion via reservation contracts, Production and Operations Management, 14 (2005), 232-251.  doi: 10.1111/j.1937-5956.2005.tb00021.x.  Google Scholar

[21]

D. Farlow, G. Schmidt and A. Tsay, Supplier management at Sun Microsystems (A), Palo Alto, CA: Stanford University Graduate School of Business, OIT-16-A and OIT-16-B, (1996). Google Scholar

[22]

S. Graves and T. de Kok, Handbooks in Operations Research and Management Science, North-Holland/Elsevier, 2003.  Google Scholar

[23]

H. L. LeeV. Padmanabhan and S. Whang, The bullwhip effect in supply chains, IEEE Engineering Management Review, 43 (2015), 108-117.  doi: 10.1109/EMR.2015.7123235.  Google Scholar

[24]

R. Levaggi, Optimal procurement contracts under a binding budget constraint, Public Choice, 101 (1999), 23-37.  doi: 10.1023/A:1018311920072.  Google Scholar

[25]

Z. LiuL. Chen and L. Li, Risk hedging in a supply chain: Option vs. price discount, International Journal of Production Economics, 151 (2014), 112-120.  doi: 10.1016/j.ijpe.2014.01.019.  Google Scholar

[26]

Z. LuoX. Chen and J. Chen, Optimal pricing policies for differentiated brands under different supply chain power structures, European Journal of Operational Research, 259 (2017), 437-451.  doi: 10.1016/j.ejor.2016.10.046.  Google Scholar

[27]

Z. Luo, X. Chen and M. Kai, The effect of customer value and power structure on product choice and pricing decisions, OMEGA-International Journal of Management Science, Forthcoming, (2017). doi: 10.1016/j.omega.2017.06.003.  Google Scholar

[28]

J. Nasiry and I. Popescu, Dynamic pricing with loss-averse consumers and peak-end anchoring, Operations Research, 59 (2011), 1361-1368.  doi: 10.1287/opre.1110.0952.  Google Scholar

[29]

S. Ng, Supply Chain Management at Solectron, Presentation[C] // Industrial Symposium on Supply Chain Management, Stanford University, Stanford, CA, (1997). Google Scholar

[30]

Ö. Özer and W. Wei, Strategic commitments for an optimal capacity decision under asymmetric forecast information, Management Science, 52 (2006), 1238-1257.  doi: 10.1287/mnsc.1060.0521.  Google Scholar

[31]

S. I. Park and J. S. Kim, A mathematical model for a capacity reservation contract, Applied Mathematical Modelling, 38 (2014), 1866-1880.  doi: 10.1016/j.apm.2013.10.005.  Google Scholar

[32]

P. H. Ritchken and C. S. Tapiero, Contingent claims contracting for purchasing decisions in inventory management, Operations Research, 34 (1986), 864-870.  doi: 10.1287/opre.34.6.864.  Google Scholar

[33]

S. Saghafian and M. P. Van Oyen, The value of flexible backup suppliers and disruption risk information: newsvendor analysis with recourse, IIE Transactions, 44 (2012), 834-867.  doi: 10.1080/0740817X.2012.654846.  Google Scholar

[34]

N. SongX. Huang and Y. Xie, Impact of reorder option in supply chain coordination, Journal of Industrial and Management Optimization, 13 (2017), 447-473.  doi: 10.3934/jimo.2016026.  Google Scholar

[35]

A. Tsay, The quantity flexibility contract and supplier-customer incentives, Management Science, 45 (1999), 1339-1358.  doi: 10.1287/mnsc.45.10.1339.  Google Scholar

[36]

C. Wang and X. Chen, Optimal ordering policy for a price-setting newsvendor with option contracts under demand uncertainty, International Journal of Production Research, 53 (2015), 6279-6293.  doi: 10.1080/00207543.2015.1053577.  Google Scholar

[37]

C. Wang and X. Chen, Option pricing and coordination in the fresh produce supply chain with portfolio contracts, Annals of Operations Research, 248 (2017), 471-491.  doi: 10.1007/s10479-016-2167-7.  Google Scholar

[38]

C. Wang and X. Chen, Joint order and pricing decisions for fresh produce with put option contracts, Journal of the Operational Research Society, Forthcoming, (2017), 1-11.  doi: 10.1057/s41274-017-0228-1.  Google Scholar

[39]

X. Wang and L. Liu, Coordination in a retailer-led supply chain through option contract, International Journal of Production Economics, 110 (2007), 115-127.  doi: 10.1016/j.ijpe.2007.02.022.  Google Scholar

[40]

C. X. Wang and S. Webster, The loss-averse newsvendor problem, OMEGA-International Journal of Management Science, 37 (2009), 93-105.  doi: 10.1016/j.omega.2006.08.003.  Google Scholar

[41]

D. J. WuP. R. Kleindorfer and Y. Sun, Optimal capacity expansion in the presence of capacity options, Decision Support Systems, 40 (2005), 553-561.  doi: 10.1016/j.dss.2004.09.005.  Google Scholar

[42]

J. H. Wu, Quantity flexibility contracts under Bayesian updating, Computer & Operations Research, 32 (2005), 1267-1288.  doi: 10.1016/j.cor.2003.11.004.  Google Scholar

[43]

X. Xu and J. R. Birge, Operational decisions, capital structure, and managerial compensation: A news vendor perspective, The Engineering Economist, 53 (2008), 173-196.  doi: 10.1080/00137910802262887.  Google Scholar

[44]

Y. ZhaoL. Ma and G. Xie, Coordination of supply chains with bidirectional option contracts, Contract Analysis and Design for Supply Chains with Stochastic Demand, 234 (2016), 115-129.  doi: 10.1007/978-1-4899-7633-8_5.  Google Scholar

show all references

References:
[1]

D. Barnes-SchusterY. Bassok and R. Anupindi, Coordination and flexibility in supply contracts with options, Manufacturing & Service Operations Management, 4 (2002), 171-207.  doi: 10.1287/msom.4.3.171.7754.  Google Scholar

[2]

A. Burnetas and P. Ritchken, Option pricing with downward-sloping demand curves: The case of supply chain options, Management Science, 51 (2005), 566-580.  doi: 10.1287/mnsc.1040.0342.  Google Scholar

[3]

J. A. Buzacott and R. Q. Zhang, Inventory management with asset-based financing, Management Science, 50 (2004), 1274-1292.  doi: 10.1287/mnsc.1040.0278.  Google Scholar

[4]

G. P. Cachon and M. A. Lariviere, Capacity choice and allocation: Strategic behavior and supply chain performance, Management Science, 45 (1999), 1091-1108.  doi: 10.1287/mnsc.45.8.1091.  Google Scholar

[5]

R. Caldentey and X. F. Chen, Handbook of Integrated Risk Management in Global Supply Chains: The Role of Financing Service in Procurement Contracts (eds. P. Kouvelis, O. Boyabatli, L. Dong and R. Li), John Wiley & Sons, Inc., New York, 2011. Google Scholar

[6]

R. Caldentey and M. B. Haugh, Supply contracts with financial hedging, Operations Research, 57 (2009), 47-65.  doi: 10.1287/opre.1080.0521.  Google Scholar

[7]

Y. K. Che and I. Gale, The optimal mechanism for selling to a budget-constrained buyer, Journal of Economic Theory, 92 (2000), 198-233.  doi: 10.1006/jeth.1999.2639.  Google Scholar

[8]

X. Chen and Z. J. Shen, An analysis of a supply chain with options contracts and service requirements, IIE Transactions, 44 (2012), 805-819.  doi: 10.1080/0740817X.2011.649383.  Google Scholar

[9]

X. ChenG. Hao and L. Li, Channel coordination with a loss-averse retailer and option contracts, International Journal of Production Economics, 150 (2014), 52-57.  doi: 10.1016/j.ijpe.2013.12.004.  Google Scholar

[10]

X. Chen and X. Wang, Free or bundled: Channel selection decisions under different power structures, OMEGA-International Journal of Management Science, 53 (2015), 11-20.  doi: 10.1016/j.omega.2014.11.008.  Google Scholar

[11]

X. ChenX. Wang and X. Jiang, The impact of power structure on retail service supply chain with an O2O mixed channel, Journal of the Operational Research Society, 67 (2016), 294-301.  doi: 10.1057/jors.2015.6.  Google Scholar

[12]

X. ChenX. Wang and H. Chan, Manufacturer and retailer coordination for environmental and economic competitiveness: A power perspective, Transportation Research Part E: Logistics and Transportation Review, 97 (2017), 268-281.  doi: 10.1016/j.tre.2016.11.007.  Google Scholar

[13]

X. ChenN. Wan and X. Wang, Flexibility and coordination in a supply chain with bidirectional option contracts and service requirement, International Journal of Production Economics, 193 (2017), 183-192.  doi: 10.1016/j.ijpe.2017.07.013.  Google Scholar

[14]

X. ChenX. Wang and K. Gong, The effect of bidimensional power structure on supply chain decisions and performance, IEEE Transactions on Systems Man and Cybernetics: Systems, PP (2017), 1-16.  doi: 10.1109/TSMC.2017.2704445.  Google Scholar

[15]

X. Chen and G. Wan, The effect of financing on a budget-constrained supply chain under wholesale price contract, Asia-Pacific Journal of Operational Research, 28 (2011), 457-485.  doi: 10.1142/S0217595911003193.  Google Scholar

[16]

K. Chen and T. Xiao, Reordering policy and coordination of a supply chain with a loss-averse retailer, Journal of Industrial and Management Optimization, 9 (2013), 827-853.  doi: 10.3934/jimo.2013.9.827.  Google Scholar

[17]

M. Dada and Q. Hu, Financing newsvendor inventory, Operations Research Letters, 36 (2008), 569-573.  doi: 10.1016/j.orl.2008.06.004.  Google Scholar

[18]

K. L. Donohue, Efficient supply contracts for fashion goods with forecast updating and two production modes, Management Science, 46 (2000), 1397-1411.  doi: 10.1287/mnsc.46.11.1397.12088.  Google Scholar

[19]

G. Eppen and A. Iyer, Backup agreements in fashion buying-the value of upstream flexibility, Management Science, 43 (1997), 1469-1484.  doi: 10.1287/mnsc.43.11.1469.  Google Scholar

[20]

M. Erkoc and S. D. Wu, Managing high-tech capacity expansion via reservation contracts, Production and Operations Management, 14 (2005), 232-251.  doi: 10.1111/j.1937-5956.2005.tb00021.x.  Google Scholar

[21]

D. Farlow, G. Schmidt and A. Tsay, Supplier management at Sun Microsystems (A), Palo Alto, CA: Stanford University Graduate School of Business, OIT-16-A and OIT-16-B, (1996). Google Scholar

[22]

S. Graves and T. de Kok, Handbooks in Operations Research and Management Science, North-Holland/Elsevier, 2003.  Google Scholar

[23]

H. L. LeeV. Padmanabhan and S. Whang, The bullwhip effect in supply chains, IEEE Engineering Management Review, 43 (2015), 108-117.  doi: 10.1109/EMR.2015.7123235.  Google Scholar

[24]

R. Levaggi, Optimal procurement contracts under a binding budget constraint, Public Choice, 101 (1999), 23-37.  doi: 10.1023/A:1018311920072.  Google Scholar

[25]

Z. LiuL. Chen and L. Li, Risk hedging in a supply chain: Option vs. price discount, International Journal of Production Economics, 151 (2014), 112-120.  doi: 10.1016/j.ijpe.2014.01.019.  Google Scholar

[26]

Z. LuoX. Chen and J. Chen, Optimal pricing policies for differentiated brands under different supply chain power structures, European Journal of Operational Research, 259 (2017), 437-451.  doi: 10.1016/j.ejor.2016.10.046.  Google Scholar

[27]

Z. Luo, X. Chen and M. Kai, The effect of customer value and power structure on product choice and pricing decisions, OMEGA-International Journal of Management Science, Forthcoming, (2017). doi: 10.1016/j.omega.2017.06.003.  Google Scholar

[28]

J. Nasiry and I. Popescu, Dynamic pricing with loss-averse consumers and peak-end anchoring, Operations Research, 59 (2011), 1361-1368.  doi: 10.1287/opre.1110.0952.  Google Scholar

[29]

S. Ng, Supply Chain Management at Solectron, Presentation[C] // Industrial Symposium on Supply Chain Management, Stanford University, Stanford, CA, (1997). Google Scholar

[30]

Ö. Özer and W. Wei, Strategic commitments for an optimal capacity decision under asymmetric forecast information, Management Science, 52 (2006), 1238-1257.  doi: 10.1287/mnsc.1060.0521.  Google Scholar

[31]

S. I. Park and J. S. Kim, A mathematical model for a capacity reservation contract, Applied Mathematical Modelling, 38 (2014), 1866-1880.  doi: 10.1016/j.apm.2013.10.005.  Google Scholar

[32]

P. H. Ritchken and C. S. Tapiero, Contingent claims contracting for purchasing decisions in inventory management, Operations Research, 34 (1986), 864-870.  doi: 10.1287/opre.34.6.864.  Google Scholar

[33]

S. Saghafian and M. P. Van Oyen, The value of flexible backup suppliers and disruption risk information: newsvendor analysis with recourse, IIE Transactions, 44 (2012), 834-867.  doi: 10.1080/0740817X.2012.654846.  Google Scholar

[34]

N. SongX. Huang and Y. Xie, Impact of reorder option in supply chain coordination, Journal of Industrial and Management Optimization, 13 (2017), 447-473.  doi: 10.3934/jimo.2016026.  Google Scholar

[35]

A. Tsay, The quantity flexibility contract and supplier-customer incentives, Management Science, 45 (1999), 1339-1358.  doi: 10.1287/mnsc.45.10.1339.  Google Scholar

[36]

C. Wang and X. Chen, Optimal ordering policy for a price-setting newsvendor with option contracts under demand uncertainty, International Journal of Production Research, 53 (2015), 6279-6293.  doi: 10.1080/00207543.2015.1053577.  Google Scholar

[37]

C. Wang and X. Chen, Option pricing and coordination in the fresh produce supply chain with portfolio contracts, Annals of Operations Research, 248 (2017), 471-491.  doi: 10.1007/s10479-016-2167-7.  Google Scholar

[38]

C. Wang and X. Chen, Joint order and pricing decisions for fresh produce with put option contracts, Journal of the Operational Research Society, Forthcoming, (2017), 1-11.  doi: 10.1057/s41274-017-0228-1.  Google Scholar

[39]

X. Wang and L. Liu, Coordination in a retailer-led supply chain through option contract, International Journal of Production Economics, 110 (2007), 115-127.  doi: 10.1016/j.ijpe.2007.02.022.  Google Scholar

[40]

C. X. Wang and S. Webster, The loss-averse newsvendor problem, OMEGA-International Journal of Management Science, 37 (2009), 93-105.  doi: 10.1016/j.omega.2006.08.003.  Google Scholar

[41]

D. J. WuP. R. Kleindorfer and Y. Sun, Optimal capacity expansion in the presence of capacity options, Decision Support Systems, 40 (2005), 553-561.  doi: 10.1016/j.dss.2004.09.005.  Google Scholar

[42]

J. H. Wu, Quantity flexibility contracts under Bayesian updating, Computer & Operations Research, 32 (2005), 1267-1288.  doi: 10.1016/j.cor.2003.11.004.  Google Scholar

[43]

X. Xu and J. R. Birge, Operational decisions, capital structure, and managerial compensation: A news vendor perspective, The Engineering Economist, 53 (2008), 173-196.  doi: 10.1080/00137910802262887.  Google Scholar

[44]

Y. ZhaoL. Ma and G. Xie, Coordination of supply chains with bidirectional option contracts, Contract Analysis and Design for Supply Chains with Stochastic Demand, 234 (2016), 115-129.  doi: 10.1007/978-1-4899-7633-8_5.  Google Scholar

Figure 1.  The structure of the optimal order policies
Figure 2.  The effects of option contracts without financing
Figure 3.  The effects of option contracts with financing
Figure 4.  Suppliers possible production quantity function
Table 1.  Nomenclature
NotationDescription
$D$Random variable for market demand with $D\geq0$
$f(x)$Probability density function for market demand
$F(x)$Cumulative distribution function for market demand, which is a continuous, strictly increasing and invertible function of $x$ with $F(x)=0$
$F^{-1}(x)$Inverse function of $F(x)$
$p$Product retail price ($/unit)
$c$Product manufacturing cost ($/unit)
$s$Product salvage value ($/unit)
$g$Retailer's shortage penalty ($/unit)
$w$Product wholesale price under wholesale price contracts ($/unit)
$w_1$Product wholesale price under option contracts ($/unit)
$b$Product option price ($/unit)
$w_2$Option exercise price ($/unit)
$q$Retailer's order quantity in the basic model
$q^1$Retailer's firm order quantity in the model with option contracts
$q^2$Retailer's option order quantity in the model with option contracts
$q^1+q^2$Retailer's portfolio order quantity in the model with option contracts, denoted as $q^1+q^2=q$
$Y$Retailer's initial budget
$H$Retailer's financing amount
$\lambda_i$Generalized Lagrange multiplier, $i=1, 2, 3$
$x^+$$x^+=max(0, x)$
$u$Mean of market demand, $u=E(D)$
$E(x)$Expected value of variable $x$
$min(x, y)$Minimum between $x$ and $y$
NotationDescription
$D$Random variable for market demand with $D\geq0$
$f(x)$Probability density function for market demand
$F(x)$Cumulative distribution function for market demand, which is a continuous, strictly increasing and invertible function of $x$ with $F(x)=0$
$F^{-1}(x)$Inverse function of $F(x)$
$p$Product retail price ($/unit)
$c$Product manufacturing cost ($/unit)
$s$Product salvage value ($/unit)
$g$Retailer's shortage penalty ($/unit)
$w$Product wholesale price under wholesale price contracts ($/unit)
$w_1$Product wholesale price under option contracts ($/unit)
$b$Product option price ($/unit)
$w_2$Option exercise price ($/unit)
$q$Retailer's order quantity in the basic model
$q^1$Retailer's firm order quantity in the model with option contracts
$q^2$Retailer's option order quantity in the model with option contracts
$q^1+q^2$Retailer's portfolio order quantity in the model with option contracts, denoted as $q^1+q^2=q$
$Y$Retailer's initial budget
$H$Retailer's financing amount
$\lambda_i$Generalized Lagrange multiplier, $i=1, 2, 3$
$x^+$$x^+=max(0, x)$
$u$Mean of market demand, $u=E(D)$
$E(x)$Expected value of variable $x$
$min(x, y)$Minimum between $x$ and $y$
[1]

Qiang Lin, Yang Xiao, Jingju Zheng. Selecting the supply chain financing mode under price-sensitive demand: Confirmed warehouse financing vs. trade credit. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2031-2049. doi: 10.3934/jimo.2020057

[2]

Kai Kang, Taotao Lu, Jing Zhang. Financing strategy selection and coordination considering risk aversion in a capital-constrained supply chain. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021042

[3]

Juliang Zhang, Jian Chen. Information sharing in a make-to-stock supply chain. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1169-1189. doi: 10.3934/jimo.2014.10.1169

[4]

Xue Qiao, Zheng Wang, Haoxun Chen. Joint optimal pricing and inventory management policy and its sensitivity analysis for perishable products: Lost sale case. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021079

[5]

Min Li, Jiahua Zhang, Yifan Xu, Wei Wang. Effects of disruption risk on a supply chain with a risk-averse retailer. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021024

[6]

Peng Tong, Xiaogang Ma. Design of differentiated warranty coverage that considers usage rate and service option of consumers under 2D warranty policy. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1577-1591. doi: 10.3934/jimo.2020035

[7]

Benrong Zheng, Xianpei Hong. Effects of take-back legislation on pricing and coordination in a closed-loop supply chain. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021035

[8]

Reza Lotfi, Yahia Zare Mehrjerdi, Mir Saman Pishvaee, Ahmad Sadeghieh, Gerhard-Wilhelm Weber. A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 221-253. doi: 10.3934/naco.2020023

[9]

Haodong Chen, Hongchun Sun, Yiju Wang. A complementarity model and algorithm for direct multi-commodity flow supply chain network equilibrium problem. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2217-2242. doi: 10.3934/jimo.2020066

[10]

Jun Tu, Zijiao Sun, Min Huang. Supply chain coordination considering e-tailer's promotion effort and logistics provider's service effort. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021062

[11]

David Cantala, Juan Sebastián Pereyra. Endogenous budget constraints in the assignment game. Journal of Dynamics & Games, 2015, 2 (3&4) : 207-225. doi: 10.3934/jdg.2015002

[12]

Ziteng Wang, Shu-Cherng Fang, Wenxun Xing. On constraint qualifications: Motivation, design and inter-relations. Journal of Industrial & Management Optimization, 2013, 9 (4) : 983-1001. doi: 10.3934/jimo.2013.9.983

[13]

Yu-Hsien Liao. Solutions and characterizations under multicriteria management systems. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021041

[14]

Martin Bohner, Sabrina Streipert. Optimal harvesting policy for the Beverton--Holt model. Mathematical Biosciences & Engineering, 2016, 13 (4) : 673-695. doi: 10.3934/mbe.2016014

[15]

Qing-Qing Yang, Wai-Ki Ching, Wan-Hua He, Na Song. Effect of institutional deleveraging on option valuation problems. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2097-2118. doi: 10.3934/jimo.2020060

[16]

Mikhail Dokuchaev, Guanglu Zhou, Song Wang. A modification of Galerkin's method for option pricing. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021077

[17]

Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023

[18]

Claudia Lederman, Noemi Wolanski. An optimization problem with volume constraint for an inhomogeneous operator with nonstandard growth. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2907-2946. doi: 10.3934/dcds.2020391

[19]

Chonghu Guan, Xun Li, Rui Zhou, Wenxin Zhou. Free boundary problem for an optimal investment problem with a borrowing constraint. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021049

[20]

Peng Zhang, Yongquan Zeng, Guotai Chi. Time-consistent multiperiod mean semivariance portfolio selection with the real constraints. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1663-1680. doi: 10.3934/jimo.2020039

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (309)
  • HTML views (969)
  • Cited by (2)

Other articles
by authors

[Back to Top]