• Previous Article
    A new proximal chebychev center cutting plane algorithm for nonsmooth optimization and its convergence
  • JIMO Home
  • This Issue
  • Next Article
    Portfolio procurement policies for budget-constrained supply chains with option contracts and external financing
July  2018, 14(3): 1123-1141. doi: 10.3934/jimo.2018002

Modeling and analyzing the chaotic behavior in supply chain networks: a control theoretic approach

1. 

Department of Electrical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran

2. 

Department of Computer Engineering, Iran University of Science and Technology, Tehran, Iran

3. 

Department of Industrial Engineering, Iran University of Science and Technology, Tehran, Iran

This research was partially supported by NSF.

Received  December 2015 Revised  August 2017 Published  January 2018

Supply chain network (SCN) is a complex nonlinear system and may have a chaotic behavior. This network involves multiple entities that cooperate to satisfy customers demand and control network inventory. The policy of each entity in demand forecast and inventory control, and constraints and uncertainties of demand and supply (or production) significantly affects the complexity of its behavior. In this paper, a supply chain network is investigated that has two ordering policies: smooth ordering policy and a new policy that is designed based on proportional-derivative controller. Two forecast methods are used in the network: moving average (MA) forecast and exponential smoothing (ES) forecast. The supply capacity of each entity is constrained. The effect of demand elasticity, which is the result of marketing activities, is involved in the SCN. The inventory adjustment parameter and demand elasticity are the most important decision parameters in the SCN. Overall, four scenarios are designed for modeling and analyzing the chaotic behavior of the network and in each scenario the maximum Lyapunov exponent is calculated and drawn. Finally, the best scenario for decision-making is obtained.

Citation: Hamid Norouzi Nav, Mohammad Reza Jahed Motlagh, Ahmad Makui. Modeling and analyzing the chaotic behavior in supply chain networks: a control theoretic approach. Journal of Industrial & Management Optimization, 2018, 14 (3) : 1123-1141. doi: 10.3934/jimo.2018002
References:
[1]

T. Aslan, Simulated chaos in bullwhip effect, J. Manage. Marketing Logist, 2 (2015), 37-43. doi: 10.17261/Pressacademia.2015111603. Google Scholar

[2]

K. J. Astrom and T. Hagglund, PID Controller: Theory, Design and Tuning, Instrument Society of America, 1995.Google Scholar

[3]

L. Chong and L. Sifeng, A robust optimization approach to reduce the bullwhip effect of supply chains with vendor order placement lead time delays in an uncertain environment, Appl. Math. Model., 37 (2013), 707-718. doi: 10.1016/j.apm.2012.02.033. Google Scholar

[4]

C. F. Daganzo, A Theory of Supply Chains, Springer, Heidelberg, 2003. Google Scholar

[5]

C. F. Daganzo, On the stability of supply chain, Oper. Res., 52 (2004), 909-921. Google Scholar

[6]

J. DejonckheereS. M. DisneyM. R. Lambrecht and D. R. Towil, Transfer function analysis of forecasting induced bullwhip in supply chain, Int. Prod. Econ., 78 (2002), 133-144. doi: 10.1016/S0925-5273(01)00084-6. Google Scholar

[7]

J. DejonckheereS. M. DisneyM. R. Lambrecht and D. R. Towil, Measuring and avoiding the bullwhip effect: A control theoretic approach, Eur. J. Oper. Res., 147 (2003), 567-590. Google Scholar

[8] J. W. Forrester, Industrial Dynamics, MIT Press, Cambridge, 1961. Google Scholar
[9]

A. L. Fradkov and R. J. Evans, Control of chaos: Methods and applications in engineering, Annu. Rev. Contro, 29 (2005), 33-56. doi: 10.1016/j.arcontrol.2005.01.001. Google Scholar

[10]

G. F. Franklin, J. D. Powell and A. Emami-Naeini, Feedback Control of Dynamic Systems, Addison-Wesley, New York, 1986.Google Scholar

[11]

A. GoksuU. E. Kocamaz and Y. Uyaroglu, Synchronization and control of chaos in supply chain management, Comput. Ind. Eng., 86 (2015), 107-115. doi: 10.1016/j.cie.2014.09.025. Google Scholar

[12]

I. HeckmannT. Comes and S. Nickel, A critical review on supply chain risk-definition, measure and modeling, Omega, 52 (2015), 119-132. doi: 10.1016/j.omega.2014.10.004. Google Scholar

[13]

M. Hussain and P. R. Drake, Analysis of the bullwhip effect with order batching in multi-echelon supply chains, Inter. J. Phys. Distrib. Logist. Manage., 41 (2011), 972-990. Google Scholar

[14]

H. B. Hwarng and N. Xie, Understanding supply chain dynamics: A chaos perspective, Eur. J. Oper. Res., 184 (2008), 1163-1178. doi: 10.1016/j.ejor.2006.12.014. Google Scholar

[15]

D. Ivanov and B. Sokolov, Control and system-theoretic identification of the supply chain dynamics domain for planning, analysis and adaptation of performance under uncertainty, Eur. J. Oper. Res., 224 (2013), 313-323. doi: 10.1016/j.ejor.2012.08.021. Google Scholar

[16] W. E. Jarmain, Problems in Industrial Dynamics, MIT Press, Cambridge, 1963. Google Scholar
[17]

M. Jarsulic, A nonlinear model of the pure growth cycle, J. Econ. Behav. Organ., 22 (1993), 133-151. doi: 10.1016/0167-2681(93)90060-3. Google Scholar

[18]

Y. KristiantoP. HeloJ. Jiao and M. Sandhu, Adaptive fuzzy vendor managed inventory control for mitigating the Bullwhip effect in supply chains, Eur. J. Oper. Res., 216 (2012), 346-355. doi: 10.1016/j.ejor.2011.07.051. Google Scholar

[19]

E. R. LarsenJ. D. W. Morecroft and J. S. Thomsen, Complex behavior in a production-distribution model, Eur. J. Oper. Res., 119 (1999), 61-74. Google Scholar

[20]

H. L. LeeV. Padmanabhan and S. J. Whang, The bullwhip effect in supply chains, IEEE Engineering Management Review, 43 (2015), 108-117. doi: 10.1109/EMR.2015.7123235. Google Scholar

[21]

M. MarraW. Ho and J. S. Edwards, Supply chain knowledge management: A literature review, Expert Syst. Appl., 39 (2012), 6103-6110. doi: 10.1016/j.eswa.2011.11.035. Google Scholar

[22]

A. Matsumoto, Can inventory chaos be welfare improving, Int. J. Prod. Econ., 71 (2001), 31-43. doi: 10.1016/S0925-5273(00)00105-5. Google Scholar

[23]

E. Mosekilde and E. R. Larsen, Deterministic chaos in the beer production-distribution system, Syst. Dynam. Rev., 4 (1988), 131-147. Google Scholar

[24]

Y. Ouyang and X. Li, The bullwhip effect in supply chain networks, Eur. J. Oper. Res., 201 (2010), 799-810. doi: 10.1016/j.ejor.2009.03.051. Google Scholar

[25]

Q. QiangK. KeT. Anderson and J. Dong, The closed-loop supply chain network with competition, distribution channel investment, and uncertainties, Omega, 41 (2013), 186-194. doi: 10.1016/j.omega.2011.08.011. Google Scholar

[26]

C. A. G. SalcedoA. I. HernandezR. Vilanova and J. H. Cuartas, Inventory control of supply chain: Mitigating the bullwhip effect by centralized and decentralized internal model control approach, Eur. J. Oper. Res., 224 (2013), 261-272. doi: 10.1016/j.ejor.2012.07.029. Google Scholar

[27]

O. Sosnovtseva and E. Mosekilde, Torus destruction and chaos-chaos intermittency in a commodity distribution chain, Int. J. Bifurcat. Chaos, 7 (1997), 1225-1242. doi: 10.1142/S0218127497000996. Google Scholar

[28]

V. L. M. SpieglerM. M. NaimD. R. Towill and J. Wikner, A technique to develop simplified and linearised models of complex dynamic supply chain systems, Eur. J. Oper. Res., 251 (2016), 888-903. doi: 10.1016/j.ejor.2015.12.004. Google Scholar

[29] J. C. Sprott, Chaos and Time -Series Analysis, Oxford University Press, 2003. Google Scholar
[30]

J. D. Sterman, Modeling managerial behavior: Misperceptions of feedback in a dynamic decision making experiment, Manage. Sci., 35 (1989), 321-339. doi: 10.1287/mnsc.35.3.321. Google Scholar

[31]

M. J. TarokhN. DabiriA. H. Shokouhi and H. Shafiei, The effect of supply network configuration on occurring chaotic behavior in the retailer's inventory, J. Ind. Eng. Int., 7 (2011), 19-28. Google Scholar

[32]

J. S. ThmomsenE. Mosekilde and J. D. Sterman, Hyper chaotic phenomena in dynamic decision making, Syst. Anal. Model. Sim., 9 (1992), 137-156. Google Scholar

[33]

S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems, Springer, New York, 1990. doi: 10.1007/978-1-4757-4067-7. Google Scholar

[34]

G. P. Williams, Chaos Theory Tamed, Taylor & Francis, Landon, 1997. Google Scholar

[35]

Y. Wu and D. Z. Zhang, Demand fluctuation and chaotic behavior by interaction between customers and suppliers, Int. J. Prod. Econ., 107 (2007), 250-259. Google Scholar

[36]

Y. R. WuL. H. HuatucoG. Frizelle and J. Smart, A method for analyzing operational complexity in supply chains, J. Oper. Res. Soc., 64 (2013), 654-667. Google Scholar

show all references

References:
[1]

T. Aslan, Simulated chaos in bullwhip effect, J. Manage. Marketing Logist, 2 (2015), 37-43. doi: 10.17261/Pressacademia.2015111603. Google Scholar

[2]

K. J. Astrom and T. Hagglund, PID Controller: Theory, Design and Tuning, Instrument Society of America, 1995.Google Scholar

[3]

L. Chong and L. Sifeng, A robust optimization approach to reduce the bullwhip effect of supply chains with vendor order placement lead time delays in an uncertain environment, Appl. Math. Model., 37 (2013), 707-718. doi: 10.1016/j.apm.2012.02.033. Google Scholar

[4]

C. F. Daganzo, A Theory of Supply Chains, Springer, Heidelberg, 2003. Google Scholar

[5]

C. F. Daganzo, On the stability of supply chain, Oper. Res., 52 (2004), 909-921. Google Scholar

[6]

J. DejonckheereS. M. DisneyM. R. Lambrecht and D. R. Towil, Transfer function analysis of forecasting induced bullwhip in supply chain, Int. Prod. Econ., 78 (2002), 133-144. doi: 10.1016/S0925-5273(01)00084-6. Google Scholar

[7]

J. DejonckheereS. M. DisneyM. R. Lambrecht and D. R. Towil, Measuring and avoiding the bullwhip effect: A control theoretic approach, Eur. J. Oper. Res., 147 (2003), 567-590. Google Scholar

[8] J. W. Forrester, Industrial Dynamics, MIT Press, Cambridge, 1961. Google Scholar
[9]

A. L. Fradkov and R. J. Evans, Control of chaos: Methods and applications in engineering, Annu. Rev. Contro, 29 (2005), 33-56. doi: 10.1016/j.arcontrol.2005.01.001. Google Scholar

[10]

G. F. Franklin, J. D. Powell and A. Emami-Naeini, Feedback Control of Dynamic Systems, Addison-Wesley, New York, 1986.Google Scholar

[11]

A. GoksuU. E. Kocamaz and Y. Uyaroglu, Synchronization and control of chaos in supply chain management, Comput. Ind. Eng., 86 (2015), 107-115. doi: 10.1016/j.cie.2014.09.025. Google Scholar

[12]

I. HeckmannT. Comes and S. Nickel, A critical review on supply chain risk-definition, measure and modeling, Omega, 52 (2015), 119-132. doi: 10.1016/j.omega.2014.10.004. Google Scholar

[13]

M. Hussain and P. R. Drake, Analysis of the bullwhip effect with order batching in multi-echelon supply chains, Inter. J. Phys. Distrib. Logist. Manage., 41 (2011), 972-990. Google Scholar

[14]

H. B. Hwarng and N. Xie, Understanding supply chain dynamics: A chaos perspective, Eur. J. Oper. Res., 184 (2008), 1163-1178. doi: 10.1016/j.ejor.2006.12.014. Google Scholar

[15]

D. Ivanov and B. Sokolov, Control and system-theoretic identification of the supply chain dynamics domain for planning, analysis and adaptation of performance under uncertainty, Eur. J. Oper. Res., 224 (2013), 313-323. doi: 10.1016/j.ejor.2012.08.021. Google Scholar

[16] W. E. Jarmain, Problems in Industrial Dynamics, MIT Press, Cambridge, 1963. Google Scholar
[17]

M. Jarsulic, A nonlinear model of the pure growth cycle, J. Econ. Behav. Organ., 22 (1993), 133-151. doi: 10.1016/0167-2681(93)90060-3. Google Scholar

[18]

Y. KristiantoP. HeloJ. Jiao and M. Sandhu, Adaptive fuzzy vendor managed inventory control for mitigating the Bullwhip effect in supply chains, Eur. J. Oper. Res., 216 (2012), 346-355. doi: 10.1016/j.ejor.2011.07.051. Google Scholar

[19]

E. R. LarsenJ. D. W. Morecroft and J. S. Thomsen, Complex behavior in a production-distribution model, Eur. J. Oper. Res., 119 (1999), 61-74. Google Scholar

[20]

H. L. LeeV. Padmanabhan and S. J. Whang, The bullwhip effect in supply chains, IEEE Engineering Management Review, 43 (2015), 108-117. doi: 10.1109/EMR.2015.7123235. Google Scholar

[21]

M. MarraW. Ho and J. S. Edwards, Supply chain knowledge management: A literature review, Expert Syst. Appl., 39 (2012), 6103-6110. doi: 10.1016/j.eswa.2011.11.035. Google Scholar

[22]

A. Matsumoto, Can inventory chaos be welfare improving, Int. J. Prod. Econ., 71 (2001), 31-43. doi: 10.1016/S0925-5273(00)00105-5. Google Scholar

[23]

E. Mosekilde and E. R. Larsen, Deterministic chaos in the beer production-distribution system, Syst. Dynam. Rev., 4 (1988), 131-147. Google Scholar

[24]

Y. Ouyang and X. Li, The bullwhip effect in supply chain networks, Eur. J. Oper. Res., 201 (2010), 799-810. doi: 10.1016/j.ejor.2009.03.051. Google Scholar

[25]

Q. QiangK. KeT. Anderson and J. Dong, The closed-loop supply chain network with competition, distribution channel investment, and uncertainties, Omega, 41 (2013), 186-194. doi: 10.1016/j.omega.2011.08.011. Google Scholar

[26]

C. A. G. SalcedoA. I. HernandezR. Vilanova and J. H. Cuartas, Inventory control of supply chain: Mitigating the bullwhip effect by centralized and decentralized internal model control approach, Eur. J. Oper. Res., 224 (2013), 261-272. doi: 10.1016/j.ejor.2012.07.029. Google Scholar

[27]

O. Sosnovtseva and E. Mosekilde, Torus destruction and chaos-chaos intermittency in a commodity distribution chain, Int. J. Bifurcat. Chaos, 7 (1997), 1225-1242. doi: 10.1142/S0218127497000996. Google Scholar

[28]

V. L. M. SpieglerM. M. NaimD. R. Towill and J. Wikner, A technique to develop simplified and linearised models of complex dynamic supply chain systems, Eur. J. Oper. Res., 251 (2016), 888-903. doi: 10.1016/j.ejor.2015.12.004. Google Scholar

[29] J. C. Sprott, Chaos and Time -Series Analysis, Oxford University Press, 2003. Google Scholar
[30]

J. D. Sterman, Modeling managerial behavior: Misperceptions of feedback in a dynamic decision making experiment, Manage. Sci., 35 (1989), 321-339. doi: 10.1287/mnsc.35.3.321. Google Scholar

[31]

M. J. TarokhN. DabiriA. H. Shokouhi and H. Shafiei, The effect of supply network configuration on occurring chaotic behavior in the retailer's inventory, J. Ind. Eng. Int., 7 (2011), 19-28. Google Scholar

[32]

J. S. ThmomsenE. Mosekilde and J. D. Sterman, Hyper chaotic phenomena in dynamic decision making, Syst. Anal. Model. Sim., 9 (1992), 137-156. Google Scholar

[33]

S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems, Springer, New York, 1990. doi: 10.1007/978-1-4757-4067-7. Google Scholar

[34]

G. P. Williams, Chaos Theory Tamed, Taylor & Francis, Landon, 1997. Google Scholar

[35]

Y. Wu and D. Z. Zhang, Demand fluctuation and chaotic behavior by interaction between customers and suppliers, Int. J. Prod. Econ., 107 (2007), 250-259. Google Scholar

[36]

Y. R. WuL. H. HuatucoG. Frizelle and J. Smart, A method for analyzing operational complexity in supply chains, J. Oper. Res. Soc., 64 (2013), 654-667. Google Scholar

Figure 1.  Schematic of the control system
Figure 2.  Supply chain network (SCN)
Figure 3.  Block diagram of entity operations
Figure 4.  Time series plot of DTI and FTI in the stable state
Figure 5.  Phase plot of DTI-FTI in the stable state
Figure 6.  Time series plot of DTI and FTI in the chaotic state
Figure 7.  Phase plot of DTI-FTI in the chaotic state
Figure 8.  Effect of the demand elasticity by the ES forecast method
Figure 9.  Effect of the inventory adjustment parameter by the ES forecast method
Figure 10.  Effect of the demand elasticity by the MA forecast method
Figure 11.  Effect of the inventory adjustment parameter by the MA forecast method
Figure 12.  Effect of the demand elasticity by the ordering policy based on the PD controller
Figure 13.  Effect of the inventory adjustment parameter by the ordering policy based on the PD controller
Figure 14.  Comparison of all scenarios with $\lambda _\max \prec 0$
Figure 15.  Comparison of all scenarios with 0 ≤ $\lambda _\max \prec 0.01$
Table 1.  Decision-making scenarios
Scenarios MA forecast ES forecast PD controller-based ordering Smooth ordering
1 * *
2 * *
3 * *
4 * *
Scenarios MA forecast ES forecast PD controller-based ordering Smooth ordering
1 * *
2 * *
3 * *
4 * *
Table 2.  The initial data and parameters
ItemValue
Total initial inventory (in each level)24
Total desired inventory (in factories)50
Total desired inventory (in distributers)40
Total desired inventory (in wholesalers)30
Total desired inventory (in retailers)20
Total initial supply line (in each level)12
Production capacity, $c_{p} $100
Basic demand, $d_{o} $12
Discount threshold, $x_{T} $40
Ratio of overstock and discount, $c$1.2
Maximum discount, $r_{\max } $0.7
Lead time, $\tau $5
Fixed updating parameter for expectations, $\theta _{i} $0.4
Number of periods used to compute the forecast, $T_{m} $4
Inventory adjustment parameter, $\alpha $$0\mathrm{\le}$ $\alpha$ $\mathrm{\le}1$
Derivative time, $\tau _{i}^{D} $$3\alpha$
Elasticity of demand, $\beta $$0\mathrm{\le}\beta\mathrm{\le}2$
ItemValue
Total initial inventory (in each level)24
Total desired inventory (in factories)50
Total desired inventory (in distributers)40
Total desired inventory (in wholesalers)30
Total desired inventory (in retailers)20
Total initial supply line (in each level)12
Production capacity, $c_{p} $100
Basic demand, $d_{o} $12
Discount threshold, $x_{T} $40
Ratio of overstock and discount, $c$1.2
Maximum discount, $r_{\max } $0.7
Lead time, $\tau $5
Fixed updating parameter for expectations, $\theta _{i} $0.4
Number of periods used to compute the forecast, $T_{m} $4
Inventory adjustment parameter, $\alpha $$0\mathrm{\le}$ $\alpha$ $\mathrm{\le}1$
Derivative time, $\tau _{i}^{D} $$3\alpha$
Elasticity of demand, $\beta $$0\mathrm{\le}\beta\mathrm{\le}2$
Table 3.  The number of Maximum LEs in different ranges
Scenario $ 0.02\le \lambda _{Max} $$0.01\le \lambda _{Max} \prec 0.02$$0\le \lambda _{Max} \prec 0.01$$\lambda _{Max} \prec 0$
11599594452
216012080440
3202306120172
420833687169
Scenario $ 0.02\le \lambda _{Max} $$0.01\le \lambda _{Max} \prec 0.02$$0\le \lambda _{Max} \prec 0.01$$\lambda _{Max} \prec 0$
11599594452
216012080440
3202306120172
420833687169
[1]

Yeong-Cheng Liou, Siegfried Schaible, Jen-Chih Yao. Supply chain inventory management via a Stackelberg equilibrium. Journal of Industrial & Management Optimization, 2006, 2 (1) : 81-94. doi: 10.3934/jimo.2006.2.81

[2]

Liping Zhang. A nonlinear complementarity model for supply chain network equilibrium. Journal of Industrial & Management Optimization, 2007, 3 (4) : 727-737. doi: 10.3934/jimo.2007.3.727

[3]

Jia Shu, Jie Sun. Designing the distribution network for an integrated supply chain. Journal of Industrial & Management Optimization, 2006, 2 (3) : 339-349. doi: 10.3934/jimo.2006.2.339

[4]

Min Li, Jiahua Zhang, Yifan Xu, Wei Wang. Effect of disruption risk on a supply chain with price-dependent demand. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-21. doi: 10.3934/jimo.2019095

[5]

Ashkan Mohsenzadeh Ledari, Alireza Arshadi Khamseh, Mohammad Mohammadi. A three echelon revenue oriented green supply chain network design. Numerical Algebra, Control & Optimization, 2018, 8 (2) : 157-168. doi: 10.3934/naco.2018009

[6]

Katherinne Salas Navarro, Jaime Acevedo Chedid, Whady F. Florez, Holman Ospina Mateus, Leopoldo Eduardo Cárdenas-Barrón, Shib Sankar Sana. A collaborative EPQ inventory model for a three-echelon supply chain with multiple products considering the effect of marketing effort on demand. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-14. doi: 10.3934/jimo.2019020

[7]

Bibhas C. Giri, Bhaba R. Sarker. Coordinating a multi-echelon supply chain under production disruption and price-sensitive stochastic demand. Journal of Industrial & Management Optimization, 2019, 15 (4) : 1631-1651. doi: 10.3934/jimo.2018115

[8]

Amin Aalaei, Hamid Davoudpour. Two bounds for integrating the virtual dynamic cellular manufacturing problem into supply chain management. Journal of Industrial & Management Optimization, 2016, 12 (3) : 907-930. doi: 10.3934/jimo.2016.12.907

[9]

Jun Li, Hairong Feng, Kun-Jen Chung. Using the algebraic approach to determine the replenishment optimal policy with defective products, backlog and delay of payments in the supply chain management. Journal of Industrial & Management Optimization, 2012, 8 (1) : 263-269. doi: 10.3934/jimo.2012.8.263

[10]

Yunan Wu, T. C. Edwin Cheng. Classical duality and existence results for a multi-criteria supply-demand network equilibrium model. Journal of Industrial & Management Optimization, 2009, 5 (3) : 615-628. doi: 10.3934/jimo.2009.5.615

[11]

T.C. Edwin Cheng, Yunan Wu. Henig efficiency of a multi-criterion supply-demand network equilibrium model. Journal of Industrial & Management Optimization, 2006, 2 (3) : 269-286. doi: 10.3934/jimo.2006.2.269

[12]

Masoud Mohammadzadeh, Alireza Arshadi Khamseh, Mohammad Mohammadi. A multi-objective integrated model for closed-loop supply chain configuration and supplier selection considering uncertain demand and different performance levels. Journal of Industrial & Management Optimization, 2017, 13 (2) : 1041-1064. doi: 10.3934/jimo.2016061

[13]

Jiuping Xu, Pei Wei. Production-distribution planning of construction supply chain management under fuzzy random environment for large-scale construction projects. Journal of Industrial & Management Optimization, 2013, 9 (1) : 31-56. doi: 10.3934/jimo.2013.9.31

[14]

Wenbin Wang, Peng Zhang, Junfei Ding, Jian Li, Hao Sun, Lingyun He. Closed-loop supply chain network equilibrium model with retailer-collection under legislation. Journal of Industrial & Management Optimization, 2019, 15 (1) : 199-219. doi: 10.3934/jimo.2018039

[15]

Qiong Liu, Ahmad Reza Rezaei, Kuan Yew Wong, Mohammad Mahdi Azami. Integrated modeling and optimization of material flow and financial flow of supply chain network considering financial ratios. Numerical Algebra, Control & Optimization, 2019, 9 (2) : 113-132. doi: 10.3934/naco.2019009

[16]

Azam Moradi, Jafar Razmi, Reza Babazadeh, Ali Sabbaghnia. An integrated Principal Component Analysis and multi-objective mathematical programming approach to agile supply chain network design under uncertainty. Journal of Industrial & Management Optimization, 2019, 15 (2) : 855-879. doi: 10.3934/jimo.2018074

[17]

Proscovia Namayanja. Chaotic dynamics in a transport equation on a network. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3415-3426. doi: 10.3934/dcdsb.2018283

[18]

Eungab Kim. On the admission control and demand management in a two-station tandem production system. Journal of Industrial & Management Optimization, 2011, 7 (1) : 1-18. doi: 10.3934/jimo.2011.7.1

[19]

Shyan-Shiou Chen, Chih-Wen Shih. Asymptotic behaviors in a transiently chaotic neural network. Discrete & Continuous Dynamical Systems - A, 2004, 10 (3) : 805-826. doi: 10.3934/dcds.2004.10.805

[20]

Irena Lasiecka, W. Heyman. Asymptotic behavior of solutions in nonlinear dynamic elasticity. Discrete & Continuous Dynamical Systems - A, 1995, 1 (2) : 237-252. doi: 10.3934/dcds.1995.1.237

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (98)
  • HTML views (797)
  • Cited by (0)

[Back to Top]