July  2018, 14(3): 1179-1201. doi: 10.3934/jimo.2018005

A threshold-based risk process with a waiting period to pay dividends

1. 

Department of Statistics and Actuarial Science, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada

2. 

School of Risk and Actuarial Studies, Australian School of Business, University of New South Wales, Australia

3. 

Department of Statistics and Actuarial Science, University of Hong Kong, Pokfulam Road, Hong Kong, China

* Corresponding author: Jae-Kyung Woo

Received  April 2016 Revised  August 2017 Published  January 2018

Fund Project: This work has been supported by the Natural Sciences and Engineering Research Council of Canada, through the Discovery grant (#238675-2010-RGPIN) of Dr. Drekic.

In this paper, a modified dividend strategy is proposed by delaying dividend payments until the insurer's surplus level remains at or above a threshold level b for a predetermined period of time h. We consider two cases depending on whether the period of time sustained at or above level b is counted either consecutively or accumulatively (referred to as standard or cumulative waiting period). In both cases, we develop a recursive computational procedure to calculate the expected total discounted dividend payments made prior to ruin for a discrete-time Sparre Andersen renewal risk process. By varying the values of b and h, a numerical study of the trade-off effects between finite-time ruin probabilities and expected total discounted dividend payments is investigated under a variety of scenarios. Finally, a generalized threshold-based strategy with a delayed dividend payment rule is studied under the compound binomial model.

Citation: Steve Drekic, Jae-Kyung Woo, Ran Xu. A threshold-based risk process with a waiting period to pay dividends. Journal of Industrial & Management Optimization, 2018, 14 (3) : 1179-1201. doi: 10.3934/jimo.2018005
References:
[1]

J. Akahori, Some formulae for a new type of path-dependent option, Annals of Appled Probability, 5 (1995), 383-388.  doi: 10.1214/aoap/1177004769.  Google Scholar

[2]

S. AsmussenF. Avram and M. Usabel, Erlangian approximations for finite-horizon ruin probabilities, ASTIN Bulletin, 32 (2002), 267-281.  doi: 10.2143/AST.32.2.1029.  Google Scholar

[3]

A. S. Alfa and S. Drekic, Algorithmic analysis of the Sparre Andersen model in discrete time, ASTIN Bulletin, 37 (2007), 293-317.  doi: 10.1017/S0515036100014872.  Google Scholar

[4]

B. Avanzi, Strategies for dividend distribution: A review, North American Actuarial Journal, 13 (2009), 217-251.  doi: 10.1080/10920277.2009.10597549.  Google Scholar

[5]

B. Bao, A note on the compound binomial model with randomized dividend strategy, Applied Mathematics and Computation, 194 (2007), 276-286.  doi: 10.1016/j.amc.2007.04.023.  Google Scholar

[6]

S. ChengH. U. Gerber and E. S. W. Shiu, Discounted probabilities and ruin theory in the compound binomial model, Insurance: Mathematics and Economics, 26 (2000), 239-250.  doi: 10.1016/S0167-6687(99)00053-0.  Google Scholar

[7]

M. ChesneyM. Jeanblanc-Picqué and M. Yor, Brownian excursions and Parisian barrier options, Advances in Applied Probability, 29 (1997), 165-184.  doi: 10.1017/S000186780002783X.  Google Scholar

[8]

E. C. K. Cheung and J. T. Y. Wong, On the dual risk model with Parisian implementation delays in dividend payments, European Journal of Operational Research, 257 (2017), 159-173.  doi: 10.1016/j.ejor.2016.09.018.  Google Scholar

[9]

H. CossetteD. Landriault and E. Marceau, Ruin probabilities in the discrete time renewal risk model, Insurance: Mathematics and Economics, 38 (2006), 309-323.  doi: 10.1016/j.insmatheco.2005.09.005.  Google Scholar

[10]

I. Czarna and Z. Palmowski, Ruin probability with Parisian delay for a spectrally negative Lévy process, Journal of Applied Probability, 48 (2011), 984-1002.  doi: 10.1017/S0021900200008573.  Google Scholar

[11]

I. Czarna and Z. Palmowski, Dividend problem with Parisian delay for a spectrally negative Lévy process, Journal of Optimization Theory and Applications, 161 (2014), 239-256.  doi: 10.1007/s10957-013-0283-y.  Google Scholar

[12]

I. CzarnaZ. Palmowski and P. Świątek, Discrete time ruin probability with Parisian delay, Scandinavian Actuarial Journal, 2017 (2017), 854-869.  doi: 10.1080/03461238.2016.1261734.  Google Scholar

[13]

A. Dassios, The distribution of the quantile of a Brownian motion with drift and the pricing of related path-dependent options, Annals of Appled Probability, 5 (1995), 389-398.  doi: 10.1214/aoap/1177004770.  Google Scholar

[14]

A. Dassios and S. Wu, On barrier strategy dividends with Parisian implementation delay for classical surplus processes, Insurance: Mathematics and Economics, 45 (2009), 195-202.  doi: 10.1016/j.insmatheco.2009.05.013.  Google Scholar

[15]

B. de Finetti, Su un'impostazione alternativa della teoria collettiva del rischio, Transactions of the XVth International Congress of Actuaries, 2 (1957), 433-443.   Google Scholar

[16]

D. C. M. Dickson, Some comments on the compound binomial model, ASTIN Bulletin, 24 (1994), 33-45.  doi: 10.2143/AST.24.1.2005079.  Google Scholar

[17]

D. C. M. Dickson and H. R. Water, Some optimal dividends problems, ASTIN Bulletin, 34 (2004), 49-74.  doi: 10.1017/S0515036100013878.  Google Scholar

[18]

S. Drekic and A. M. Mera, Ruin analysis of a threshold strategy in a discrete-time Sparre Andersen Model, Methodology and Computing in Applied Probability, 13 (2011), 723-747.  doi: 10.1007/s11009-010-9184-9.  Google Scholar

[19]

H. U. Gerber, Mathematical fun with compound binomial process, ASTIN Bulletin, 18 (1988), 161-168.  doi: 10.2143/AST.18.2.2014949.  Google Scholar

[20]

H. U. Gerber and E. S. W. Shiu, On the time value of ruin, North American Actuarial Journal, 2 (1998), 48-78.  doi: 10.1080/10920277.1998.10595671.  Google Scholar

[21]

S.S. Kim and S. Drekic, Ruin analysis of a discrete-time dependent Sparre Andersen model with external financial activities and randomized dividends, Risks, 4 (2016), p2.  doi: 10.3390/risks4010002.  Google Scholar

[22]

B. KimH.-S. Kim and J. Kim, A risk model with paying dividends and random environment, Insurance: Mathematics and Economics, 42 (2008), 717-726.  doi: 10.1016/j.insmatheco.2007.08.001.  Google Scholar

[23]

D. Landriault, Randomized dividends in the compound binomial model with a general premium rate, Scandinavian Actuarial Journal, 2008 (2008), 1-15.   Google Scholar

[24]

D. LandriaultJ.-F. Renaud and X. Zhou, An insurance risk model with Parisian implementation delays, Methodology and Computing in Applied Probability, 16 (2014), 583-607.  doi: 10.1007/s11009-012-9317-4.  Google Scholar

[25]

M. A. LkabousI. Czarna and J.-F. Renaud, Parisian ruin for a refracted Lévy process, Insurance: Mathematics and Economics, 74 (2017), 153-163.  doi: 10.1016/j.insmatheco.2017.03.005.  Google Scholar

[26]

S. Li, On a class of discrete time renewal risk models, Scandinavian Actuarial Journal, 2005 (2005), 241-260.   Google Scholar

[27]

S. Li, Distributions of the surplus before ruin, the deficit at ruin and the claim causing ruin in a class of discrete time renewal risk models, Scandinavian Actuarial Journal, 2005 (2005), 271-284.   Google Scholar

[28]

R. LoeffenI. Czarna and Z. Palmowski, Parisian ruin probability for spectrally negative Lévy process, Bernoulli, 19 (2013), 599-609.  doi: 10.3150/11-BEJ404.  Google Scholar

[29]

K. P. Pavlova and G. E. Willmot, The discrete stationary renewal risk model and the Gerber-Shiu discounted penalty function, Insurance: Mathematics and Economics, 35 (2004), 267-277.  doi: 10.2143/AST.32.2.1029.  Google Scholar

[30]

A. Pechtl, Some applications of occupation times of Brownian motion with drift in mathematical finance, Journal of Applied Mathematics and Decision Sciences, 3 (1999), 63-73.  doi: 10.1155/S1173912699000048.  Google Scholar

[31]

E. S. W. Shiu, The probability of eventual ruin in the compound binomial model, ASTIN Bulletin, 19 (1989), 179-190.  doi: 10.2143/AST.19.2.2014907.  Google Scholar

[32]

D. W. Sommer, The impact of firm risk on property-liability insurance prices, Journal of Risk and Insurance, 63 (1996), 501-514.  doi: 10.2307/253623.  Google Scholar

[33]

J. Tan and X. Yang, The compound binomial model with randomized decisions on paying dividends, Insurance: Mathematics and Economics, 39 (2006), 1-18.  doi: 10.1016/j.insmatheco.2006.01.001.  Google Scholar

[34]

G. Venter and A. Underwood, Value of risk reduction, Casualty Actuary Society E-Forum, 2 (2012), 1-19.   Google Scholar

[35]

G. E. Willmot, Ruin probabilities in the compound binomial model, Insurance: Mathematics and Economics, 12 (1993), 133-142.  doi: 10.1016/0167-6687(93)90823-8.  Google Scholar

[36]

J. T. Y. Wong and E. C. K. Cheung, On the time value of Parisian ruin in (dual) renewal risk processes with exponential jumps, Insurance: Mathematics and Economics, 65 (2015), 280-290.  doi: 10.1016/j.insmatheco.2015.10.001.  Google Scholar

[37]

J.-K. Woo, A generalized penalty function for a class of discrete renewal processes, Scandinavian Actuarial Journal, 2012 (2012), 130-152.   Google Scholar

[38]

X. Wu and S. Li, On the discounted penalty function in a discrete time renewal risk model with general interclaim times, Scandinavian Actuarial Journal, 2009 (2009), 281-294.   Google Scholar

show all references

References:
[1]

J. Akahori, Some formulae for a new type of path-dependent option, Annals of Appled Probability, 5 (1995), 383-388.  doi: 10.1214/aoap/1177004769.  Google Scholar

[2]

S. AsmussenF. Avram and M. Usabel, Erlangian approximations for finite-horizon ruin probabilities, ASTIN Bulletin, 32 (2002), 267-281.  doi: 10.2143/AST.32.2.1029.  Google Scholar

[3]

A. S. Alfa and S. Drekic, Algorithmic analysis of the Sparre Andersen model in discrete time, ASTIN Bulletin, 37 (2007), 293-317.  doi: 10.1017/S0515036100014872.  Google Scholar

[4]

B. Avanzi, Strategies for dividend distribution: A review, North American Actuarial Journal, 13 (2009), 217-251.  doi: 10.1080/10920277.2009.10597549.  Google Scholar

[5]

B. Bao, A note on the compound binomial model with randomized dividend strategy, Applied Mathematics and Computation, 194 (2007), 276-286.  doi: 10.1016/j.amc.2007.04.023.  Google Scholar

[6]

S. ChengH. U. Gerber and E. S. W. Shiu, Discounted probabilities and ruin theory in the compound binomial model, Insurance: Mathematics and Economics, 26 (2000), 239-250.  doi: 10.1016/S0167-6687(99)00053-0.  Google Scholar

[7]

M. ChesneyM. Jeanblanc-Picqué and M. Yor, Brownian excursions and Parisian barrier options, Advances in Applied Probability, 29 (1997), 165-184.  doi: 10.1017/S000186780002783X.  Google Scholar

[8]

E. C. K. Cheung and J. T. Y. Wong, On the dual risk model with Parisian implementation delays in dividend payments, European Journal of Operational Research, 257 (2017), 159-173.  doi: 10.1016/j.ejor.2016.09.018.  Google Scholar

[9]

H. CossetteD. Landriault and E. Marceau, Ruin probabilities in the discrete time renewal risk model, Insurance: Mathematics and Economics, 38 (2006), 309-323.  doi: 10.1016/j.insmatheco.2005.09.005.  Google Scholar

[10]

I. Czarna and Z. Palmowski, Ruin probability with Parisian delay for a spectrally negative Lévy process, Journal of Applied Probability, 48 (2011), 984-1002.  doi: 10.1017/S0021900200008573.  Google Scholar

[11]

I. Czarna and Z. Palmowski, Dividend problem with Parisian delay for a spectrally negative Lévy process, Journal of Optimization Theory and Applications, 161 (2014), 239-256.  doi: 10.1007/s10957-013-0283-y.  Google Scholar

[12]

I. CzarnaZ. Palmowski and P. Świątek, Discrete time ruin probability with Parisian delay, Scandinavian Actuarial Journal, 2017 (2017), 854-869.  doi: 10.1080/03461238.2016.1261734.  Google Scholar

[13]

A. Dassios, The distribution of the quantile of a Brownian motion with drift and the pricing of related path-dependent options, Annals of Appled Probability, 5 (1995), 389-398.  doi: 10.1214/aoap/1177004770.  Google Scholar

[14]

A. Dassios and S. Wu, On barrier strategy dividends with Parisian implementation delay for classical surplus processes, Insurance: Mathematics and Economics, 45 (2009), 195-202.  doi: 10.1016/j.insmatheco.2009.05.013.  Google Scholar

[15]

B. de Finetti, Su un'impostazione alternativa della teoria collettiva del rischio, Transactions of the XVth International Congress of Actuaries, 2 (1957), 433-443.   Google Scholar

[16]

D. C. M. Dickson, Some comments on the compound binomial model, ASTIN Bulletin, 24 (1994), 33-45.  doi: 10.2143/AST.24.1.2005079.  Google Scholar

[17]

D. C. M. Dickson and H. R. Water, Some optimal dividends problems, ASTIN Bulletin, 34 (2004), 49-74.  doi: 10.1017/S0515036100013878.  Google Scholar

[18]

S. Drekic and A. M. Mera, Ruin analysis of a threshold strategy in a discrete-time Sparre Andersen Model, Methodology and Computing in Applied Probability, 13 (2011), 723-747.  doi: 10.1007/s11009-010-9184-9.  Google Scholar

[19]

H. U. Gerber, Mathematical fun with compound binomial process, ASTIN Bulletin, 18 (1988), 161-168.  doi: 10.2143/AST.18.2.2014949.  Google Scholar

[20]

H. U. Gerber and E. S. W. Shiu, On the time value of ruin, North American Actuarial Journal, 2 (1998), 48-78.  doi: 10.1080/10920277.1998.10595671.  Google Scholar

[21]

S.S. Kim and S. Drekic, Ruin analysis of a discrete-time dependent Sparre Andersen model with external financial activities and randomized dividends, Risks, 4 (2016), p2.  doi: 10.3390/risks4010002.  Google Scholar

[22]

B. KimH.-S. Kim and J. Kim, A risk model with paying dividends and random environment, Insurance: Mathematics and Economics, 42 (2008), 717-726.  doi: 10.1016/j.insmatheco.2007.08.001.  Google Scholar

[23]

D. Landriault, Randomized dividends in the compound binomial model with a general premium rate, Scandinavian Actuarial Journal, 2008 (2008), 1-15.   Google Scholar

[24]

D. LandriaultJ.-F. Renaud and X. Zhou, An insurance risk model with Parisian implementation delays, Methodology and Computing in Applied Probability, 16 (2014), 583-607.  doi: 10.1007/s11009-012-9317-4.  Google Scholar

[25]

M. A. LkabousI. Czarna and J.-F. Renaud, Parisian ruin for a refracted Lévy process, Insurance: Mathematics and Economics, 74 (2017), 153-163.  doi: 10.1016/j.insmatheco.2017.03.005.  Google Scholar

[26]

S. Li, On a class of discrete time renewal risk models, Scandinavian Actuarial Journal, 2005 (2005), 241-260.   Google Scholar

[27]

S. Li, Distributions of the surplus before ruin, the deficit at ruin and the claim causing ruin in a class of discrete time renewal risk models, Scandinavian Actuarial Journal, 2005 (2005), 271-284.   Google Scholar

[28]

R. LoeffenI. Czarna and Z. Palmowski, Parisian ruin probability for spectrally negative Lévy process, Bernoulli, 19 (2013), 599-609.  doi: 10.3150/11-BEJ404.  Google Scholar

[29]

K. P. Pavlova and G. E. Willmot, The discrete stationary renewal risk model and the Gerber-Shiu discounted penalty function, Insurance: Mathematics and Economics, 35 (2004), 267-277.  doi: 10.2143/AST.32.2.1029.  Google Scholar

[30]

A. Pechtl, Some applications of occupation times of Brownian motion with drift in mathematical finance, Journal of Applied Mathematics and Decision Sciences, 3 (1999), 63-73.  doi: 10.1155/S1173912699000048.  Google Scholar

[31]

E. S. W. Shiu, The probability of eventual ruin in the compound binomial model, ASTIN Bulletin, 19 (1989), 179-190.  doi: 10.2143/AST.19.2.2014907.  Google Scholar

[32]

D. W. Sommer, The impact of firm risk on property-liability insurance prices, Journal of Risk and Insurance, 63 (1996), 501-514.  doi: 10.2307/253623.  Google Scholar

[33]

J. Tan and X. Yang, The compound binomial model with randomized decisions on paying dividends, Insurance: Mathematics and Economics, 39 (2006), 1-18.  doi: 10.1016/j.insmatheco.2006.01.001.  Google Scholar

[34]

G. Venter and A. Underwood, Value of risk reduction, Casualty Actuary Society E-Forum, 2 (2012), 1-19.   Google Scholar

[35]

G. E. Willmot, Ruin probabilities in the compound binomial model, Insurance: Mathematics and Economics, 12 (1993), 133-142.  doi: 10.1016/0167-6687(93)90823-8.  Google Scholar

[36]

J. T. Y. Wong and E. C. K. Cheung, On the time value of Parisian ruin in (dual) renewal risk processes with exponential jumps, Insurance: Mathematics and Economics, 65 (2015), 280-290.  doi: 10.1016/j.insmatheco.2015.10.001.  Google Scholar

[37]

J.-K. Woo, A generalized penalty function for a class of discrete renewal processes, Scandinavian Actuarial Journal, 2012 (2012), 130-152.   Google Scholar

[38]

X. Wu and S. Li, On the discounted penalty function in a discrete time renewal risk model with general interclaim times, Scandinavian Actuarial Journal, 2009 (2009), 281-294.   Google Scholar

Figure 1.  Illustration of the threshold-based dividend strategy: Standard waiting period
Figure 2.  Illustration of the threshold-based dividend strategy: Cumulative waiting period
Figure 3.  Layering of the recursive algorithm for $V_i(u, m)$
Figure 4.  Plots of $V(10, 80)$ and $\psi(10, 80)$ under Distribution 1
Figure 5.  Plots of $V(10, 80)$ and $\psi(10, 80)$ under Distribution 2
Figure 6.  Plots of $V(10, 80)$ and $\psi(10, 80)$ under Distribution 3
Figure 7.  Plot of $V(10, 80)$ against $(h, b)$ under Distribution 2
Figure 8.  Plot of $V(10, 80)$ against $\psi(10, 80)$ under Distribution 2
Figure 9.  Convergence of $V(10, m)$ under Distribution 2
Figure 10.  Illustration of the generalized threshold-based dividend strategy
Figure 11.  Plot of $V(10,100)$ against $(h, b)$ under the generalized threshold-based dividend strategy
Figure 12.  Plot of $\psi(10,100)$ against $(h, b)$ under the generalized threshold-based dividend strategy
[1]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[2]

Horst R. Thieme. Discrete-time dynamics of structured populations via Feller kernels. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021082

[3]

Omer Gursoy, Kamal Adli Mehr, Nail Akar. Steady-state and first passage time distributions for waiting times in the $ MAP/M/s+G $ queueing model with generally distributed patience times. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021078

[4]

Elena K. Kostousova. External polyhedral estimates of reachable sets of discrete-time systems with integral bounds on additive terms. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021015

[5]

Tadeusz Kaczorek, Andrzej Ruszewski. Analysis of the fractional descriptor discrete-time linear systems by the use of the shuffle algorithm. Journal of Computational Dynamics, 2021  doi: 10.3934/jcd.2021007

[6]

Andrea Signori. Penalisation of long treatment time and optimal control of a tumour growth model of Cahn–Hilliard type with singular potential. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2519-2542. doi: 10.3934/dcds.2020373

[7]

Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973

[8]

Hideaki Takagi. Extension of Littlewood's rule to the multi-period static revenue management model with standby customers. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2181-2202. doi: 10.3934/jimo.2020064

[9]

Elimhan N. Mahmudov. Second order discrete time-varying and time-invariant linear continuous systems and Kalman type conditions. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021010

[10]

Reza Lotfi, Yahia Zare Mehrjerdi, Mir Saman Pishvaee, Ahmad Sadeghieh, Gerhard-Wilhelm Weber. A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 221-253. doi: 10.3934/naco.2020023

[11]

Wenyuan Wang, Ran Xu. General drawdown based dividend control with fixed transaction costs for spectrally negative Lévy risk processes. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020179

[12]

Ronald E. Mickens. Positivity preserving discrete model for the coupled ODE's modeling glycolysis. Conference Publications, 2003, 2003 (Special) : 623-629. doi: 10.3934/proc.2003.2003.623

[13]

Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1

[14]

Kai Kang, Taotao Lu, Jing Zhang. Financing strategy selection and coordination considering risk aversion in a capital-constrained supply chain. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021042

[15]

Linlin Li, Bedreddine Ainseba. Large-time behavior of matured population in an age-structured model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2561-2580. doi: 10.3934/dcdsb.2020195

[16]

Linyao Ge, Baoxiang Huang, Weibo Wei, Zhenkuan Pan. Semi-Supervised classification of hyperspectral images using discrete nonlocal variation Potts Model. Mathematical Foundations of Computing, 2021  doi: 10.3934/mfc.2021003

[17]

Harumi Hattori, Aesha Lagha. Global existence and decay rates of the solutions for a chemotaxis system with Lotka-Volterra type model for chemoattractant and repellent. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021071

[18]

Jing Feng, Bin-Guo Wang. An almost periodic Dengue transmission model with age structure and time-delayed input of vector in a patchy environment. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3069-3096. doi: 10.3934/dcdsb.2020220

[19]

Sumon Sarkar, Bibhas C. Giri. Optimal lot-sizing policy for a failure prone production system with investment in process quality improvement and lead time variance reduction. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021048

[20]

Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (111)
  • HTML views (831)
  • Cited by (1)

Other articles
by authors

[Back to Top]