This paper derives the optimal debt ratio, investment and dividend payment strategies for an insurance company. The surplus process is jointly determined by the reinsurance strategies, debt levels, investment portfolios and unanticipated shocks. The objective is to maximize the total expected discounted utility of dividend payments in finite-time period subject to three control variables. The utility functions are chosen as the logarithmic and power utility functions. Using dynamic programming principle, the value function is the solution of a second-order nonlinear Hamilton-Jacobi-Bellman equation. The explicit solution of the value function is derived and the corresponding optimal debt ratio, investment and dividend payment strategies are obtained. In addition, the investment borrowing constraint, dividend payment constraint and impacts of reinsurance policies are considered and their impacts on the optimal strategies are analyzed. Further, to incorporating the interest rate risk, the problem is studied under a stochastic interest rate model.
Citation: |
H. Albrecher
and S. Thonhauser
, Optimality results for dividend problems in insurance, RACSAM-Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 103 (2009)
, 295-320.
doi: 10.1007/BF03191909.![]() ![]() ![]() |
|
S. Asmussen
, B. Høgaard
and M. Taksar
, Optimal risk control and dividend distribution policies. Example of excess-of loss reinsurance for an insurance corporation, Finance and Stochastics, 4 (2000)
, 299-324.
doi: 10.1007/s007800050075.![]() ![]() ![]() |
|
S. Asmussen
and M. Taksar
, Controlled diffusion models for optimal dividend pay-out, Insurance: Mathematics and Economics, 20 (1997)
, 1-15.
doi: 10.1016/S0167-6687(96)00017-0.![]() ![]() ![]() |
|
P. Azcue
and N. Muler
, Optimal investment policy and dividend payment strategy in an insurance company, The Annals of Applied Probability, 20 (2010)
, 1253-1302.
doi: 10.1214/09-AAP643.![]() ![]() ![]() |
|
Y. C. Chi
and H. Meng
, Optimal reinsurance arrangements in the presence of two reinsurers, Scandinavian Actuarial Journal, 5 (2014)
, 424-438.
![]() ![]() |
|
T. Choulli
, M. Taksar
and X. Y. Zhou
, Excess-of-loss reinsurance for a company with debt liability and constraints on risk reduction, Quant. Finance, 1 (2001)
, 573-596.
doi: 10.1088/1469-7688/1/6/301.![]() ![]() ![]() |
|
B. De Finetti
, Su unimpostazione alternativa della teoria collettiva del rischio, Transactions of the XVth International Congress of Actuaries, 2 (1957)
, 433-443.
![]() |
|
W. H. Fleming
and T. Pang
, An application of stochastic control theory to financial economics, SIAM Journal of Control and Optimization, 43 (2004)
, 502-531.
doi: 10.1137/S0363012902419060.![]() ![]() ![]() |
|
H. U. Gerber
and E. S. W. Shiu
, Optimal dividends: Analysis with Brownian motion, North American Actuarial Journal, 8 (2004)
, 1-20.
doi: 10.1080/10920277.2004.10596125.![]() ![]() ![]() |
|
H. U. Gerber
and E. S. W. Shiu
, On optimal dividend strategies in the compound Poisson model, North American Actuarial Journal, 10 (2006)
, 76-93.
doi: 10.1080/10920277.2006.10596249.![]() ![]() ![]() |
|
Z. Jin
, H. Yang
and G. Yin
, Numerical methods for optimal dividend payment and investment strategies of regime-switching jump diffusion models with capital injections, Automatica, 49 (2013)
, 2317-2329.
doi: 10.1016/j.automatica.2013.04.043.![]() ![]() ![]() |
|
Z. Jin
, H. Yang
and G. Yin
, Optimal debt ratio and dividend payment strategies with reinsurance, Insurance: Mathematics and Economics, 64 (2015)
, 351-363.
doi: 10.1016/j.insmatheco.2015.07.005.![]() ![]() ![]() |
|
N. Kulenko
and H. Schimidli
, An optimal dividend strategy in a Craḿer Lundberg model with capital injections, Insurance: Mathmatics and Economics, 43 (2008)
, 270-278.
doi: 10.1016/j.insmatheco.2008.05.013.![]() ![]() ![]() |
|
Z. F. Li
, Y. Zeng
and Y. Z. Lai
, Optimal time-consistent investment and reinsurance strategies for insurers under Heston's SV model, Insurance: Mathematics and Economics, 51 (2012)
, 191-203.
doi: 10.1016/j.insmatheco.2011.09.002.![]() ![]() ![]() |
|
H. Meng
and T. K. Siu
, Optimal mixed impulse-equity insurance control problem with reinsurance, SIAM Journal on Control and Optimization, 49 (2011)
, 254-279.
doi: 10.1137/090773167.![]() ![]() ![]() |
|
C. V. Pao,
Nonlinear Parabolic and Elliptic Equations Plenum Press, New York, 1992.
![]() ![]() |
|
Stein and L. Jerome,
Stochastic Optimal Control and the U. S. Financial Debt Crisis Springer, New York, 2012.
![]() ![]() |
|
J. Wei
, H. Yang
and R. Wang
, Classical and impulse control for the optimization of dividend and proportional reinsurance policies with regime switching, Journal of Optimization Theory and Applications, 147 (2010)
, 358-377.
doi: 10.1007/s10957-010-9726-x.![]() ![]() ![]() |
|
D. Yao
, H. Yang
and R. Wang
, Optimal dividend and capital injection problem in the dual model with proportional and fixed transaction costs, European Journal of Operational Research, 211 (2011)
, 568-576.
doi: 10.1016/j.ejor.2011.01.015.![]() ![]() ![]() |
|
G. Yin
, H. Jin
and Z. Jin
, Numerical methods for portfolio selection with bounded constraints, J. Computational Appl. Math., 233 (2009)
, 564-581.
doi: 10.1016/j.cam.2009.08.055.![]() ![]() ![]() |
|
X. Y. Zhou
and G. Yin
, Markowitz mean-variance portfolio selection with regime switching: A continuous-time model, SIAM J. Control Optim., 42 (2003)
, 1466-1482.
doi: 10.1137/S0363012902405583.![]() ![]() ![]() |
|
M. Zhou
and K. C. Yuen
, Optimal reinsurance and dividend for a diffusion model with capital injection: Variance premium principle, Economic Modeling, 29 (2012)
, 198-207.
doi: 10.1016/j.econmod.2011.09.007.![]() ![]() |
|
J. Zhu
, Dividend optimization for a regime-switching diffusion model with restricted dividend rates, ASTIN Bulletin, 44 (2014)
, 459-494.
doi: 10.1017/asb.2014.2.![]() ![]() ![]() |