
-
Previous Article
Frequency $H_{2}/H_{∞}$ optimizing control for isolated microgrid based on IPSO algorithm
- JIMO Home
- This Issue
-
Next Article
Optimal pricing and inventory management for a loss averse firm when facing strategic customers
Analysis of a dynamic premium strategy: From theoretical and marketing perspectives
1. | Department of Mathematics and Statistics, Hang Seng Management College, Hang Shin Link, Siu Lek Yuen, Shatin, N.T., Hong Kong, China |
2. | China Institute for Actuarial Science, Central University of Finance and Economics, China |
Premium rate for an insurance policy is often reviewed and updated periodically according to past claim experience in real-life. In this paper, a dynamic premium strategy that depends on the past claim experience is proposed under the discrete-time risk model. The Gerber-Shiu function is analyzed under this model. The marketing implications of the dynamic premium strategy will also be discussed.
References:
[1] |
L. B. Afonso, A. D. Egidio dos Reis and H. R. Waters,
Calculating continuous time ruin probabilities for a large portfolio with varying premium, ASTIN Bulletin, 39 (2009), 117-136.
doi: 10.2143/AST.39.1.2038059. |
[2] |
L. B. Afonso, A. D. Egidio dos Reis and H. R. Waters,
Numerical evaluation of continuous time ruin probabilities for a portfolio with credibility updated premiums, ASTIN Bulletin, 40 (2010), 399-414.
doi: 10.2143/AST.40.1.2049236. |
[3] |
L. B. Afonso, Evaluation of ruin probabilities for surplus process with credibility and surplus dependent premium, Ph. D. Thesis, 2008. |
[4] |
S. Asmussen, On the ruin problem for some adapted premium rules, MaPhySto Research Report No. 5 University of Aarhus, Denmark., 1999. |
[5] |
S. Asmussen and H. Albrecher, Ruin Probabilities, World Scientific, 2010.
![]() ![]() |
[6] |
E. C. K. Cheung, D. Landriault, G. E. Willmot and J.-K. Woo,
Gerber-Shiu analysis with a generalized penalty function, Scandinavian Actuarial Journal, 2010 (2010), 185-199.
|
[7] |
E. C. K. Cheung, D. Landriault, G. E. Willmot and J.-K. Woo,
Structural properties of Gerber-Shiu function in dependent Sparre Andersen models, Insurance: Mathematics and Economics, 46 (2010), 117-126.
doi: 10.1016/j.insmatheco.2009.05.009. |
[8] |
E. C. K. Cheung, D. Landriault, G. E. Willmot and J.-K. Woo,
On orderings and bounds in a generalized sparre andersen risk model, Applied Stochastic Models in Business and Industry, 27 (2011), 51-60.
doi: 10.1002/asmb.837. |
[9] |
H. U. Gerber and E. S. W. Shiu,
On the time value of ruin, North American Actuarial Journal, 2 (1998), 48-78.
doi: 10.1080/10920277.1998.10595671. |
[10] |
D. Landriault, C. Lemieux and G. E. Willmot,
An adaptive premium policy with a Bayesian motivation in the classical risk model, Insurance: Mathematics and Economics, 51 (2012), 370-378.
doi: 10.1016/j.insmatheco.2012.06.001. |
[11] |
S. Li, D. Landriault and C. Lemieux,
A risk model with varying premiums: Its risk management implications, Insurance: Mathematics and Economics, 60 (2015), 38-46.
doi: 10.1016/j.insmatheco.2014.10.010. |
[12] |
Z. Li and K. P. Sendova,
On a ruin model with both interclaim times and premiums depending on claim sizes, Scandinavian Actuarial Journal, 2015 (2015), 245-265.
|
[13] |
S. Loisel and J. Trufin,
Ultimate ruin probability in discrete time with Buhlmann credibility premium adjustments, Bulletin Francais d'Actuariat, 13 (2013), 73-102.
|
[14] |
C. C. -L. Tsai and G. Parker, Ruin probabilities: Classical versus credibility, NTU International Conference on Finance, 2004. |
[15] |
A. Tversky and D. Kahneman,
Advances in prospect theory: Cumulative representation of uncertainty, Journal of Risk and Uncertainty, 5 (1992), 297-323.
|
[16] |
J.-K. Woo,
A generalized penalty function for a class of discrete renewal processes, Scandinavian Actuarial Journal, 2012 (2012), 130-152.
|
[17] |
X. Wu and S. Li,
On the discounted penalty function in a discrete time renewal risk model with general interclaim times, Scandinavian Actuarial Journal, 2009 (2009), 281-294.
|
[18] |
Z. Zhang, Y. Yang and C. Liu,
On a perturbed compound Poisson model with varying premium rates, Journal of Industrial and Management Optimization, 13 (2017), 721-736.
|
show all references
References:
[1] |
L. B. Afonso, A. D. Egidio dos Reis and H. R. Waters,
Calculating continuous time ruin probabilities for a large portfolio with varying premium, ASTIN Bulletin, 39 (2009), 117-136.
doi: 10.2143/AST.39.1.2038059. |
[2] |
L. B. Afonso, A. D. Egidio dos Reis and H. R. Waters,
Numerical evaluation of continuous time ruin probabilities for a portfolio with credibility updated premiums, ASTIN Bulletin, 40 (2010), 399-414.
doi: 10.2143/AST.40.1.2049236. |
[3] |
L. B. Afonso, Evaluation of ruin probabilities for surplus process with credibility and surplus dependent premium, Ph. D. Thesis, 2008. |
[4] |
S. Asmussen, On the ruin problem for some adapted premium rules, MaPhySto Research Report No. 5 University of Aarhus, Denmark., 1999. |
[5] |
S. Asmussen and H. Albrecher, Ruin Probabilities, World Scientific, 2010.
![]() ![]() |
[6] |
E. C. K. Cheung, D. Landriault, G. E. Willmot and J.-K. Woo,
Gerber-Shiu analysis with a generalized penalty function, Scandinavian Actuarial Journal, 2010 (2010), 185-199.
|
[7] |
E. C. K. Cheung, D. Landriault, G. E. Willmot and J.-K. Woo,
Structural properties of Gerber-Shiu function in dependent Sparre Andersen models, Insurance: Mathematics and Economics, 46 (2010), 117-126.
doi: 10.1016/j.insmatheco.2009.05.009. |
[8] |
E. C. K. Cheung, D. Landriault, G. E. Willmot and J.-K. Woo,
On orderings and bounds in a generalized sparre andersen risk model, Applied Stochastic Models in Business and Industry, 27 (2011), 51-60.
doi: 10.1002/asmb.837. |
[9] |
H. U. Gerber and E. S. W. Shiu,
On the time value of ruin, North American Actuarial Journal, 2 (1998), 48-78.
doi: 10.1080/10920277.1998.10595671. |
[10] |
D. Landriault, C. Lemieux and G. E. Willmot,
An adaptive premium policy with a Bayesian motivation in the classical risk model, Insurance: Mathematics and Economics, 51 (2012), 370-378.
doi: 10.1016/j.insmatheco.2012.06.001. |
[11] |
S. Li, D. Landriault and C. Lemieux,
A risk model with varying premiums: Its risk management implications, Insurance: Mathematics and Economics, 60 (2015), 38-46.
doi: 10.1016/j.insmatheco.2014.10.010. |
[12] |
Z. Li and K. P. Sendova,
On a ruin model with both interclaim times and premiums depending on claim sizes, Scandinavian Actuarial Journal, 2015 (2015), 245-265.
|
[13] |
S. Loisel and J. Trufin,
Ultimate ruin probability in discrete time with Buhlmann credibility premium adjustments, Bulletin Francais d'Actuariat, 13 (2013), 73-102.
|
[14] |
C. C. -L. Tsai and G. Parker, Ruin probabilities: Classical versus credibility, NTU International Conference on Finance, 2004. |
[15] |
A. Tversky and D. Kahneman,
Advances in prospect theory: Cumulative representation of uncertainty, Journal of Risk and Uncertainty, 5 (1992), 297-323.
|
[16] |
J.-K. Woo,
A generalized penalty function for a class of discrete renewal processes, Scandinavian Actuarial Journal, 2012 (2012), 130-152.
|
[17] |
X. Wu and S. Li,
On the discounted penalty function in a discrete time renewal risk model with general interclaim times, Scandinavian Actuarial Journal, 2009 (2009), 281-294.
|
[18] |
Z. Zhang, Y. Yang and C. Liu,
On a perturbed compound Poisson model with varying premium rates, Journal of Industrial and Management Optimization, 13 (2017), 721-736.
|

[1] |
Haixiang Yao, Ping Chen, Miao Zhang, Xun Li. Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk. Journal of Industrial and Management Optimization, 2022, 18 (1) : 511-540. doi: 10.3934/jimo.2020166 |
[2] |
Abhyudai Singh, Roger M. Nisbet. Variation in risk in single-species discrete-time models. Mathematical Biosciences & Engineering, 2008, 5 (4) : 859-875. doi: 10.3934/mbe.2008.5.859 |
[3] |
Qingwu Gao, Zhongquan Huang, Houcai Shen, Juan Zheng. Asymptotics for random-time ruin probability in a time-dependent renewal risk model with subexponential claims. Journal of Industrial and Management Optimization, 2016, 12 (1) : 31-43. doi: 10.3934/jimo.2016.12.31 |
[4] |
Yuebao Wang, Qingwu Gao, Kaiyong Wang, Xijun Liu. Random time ruin probability for the renewal risk model with heavy-tailed claims. Journal of Industrial and Management Optimization, 2009, 5 (4) : 719-736. doi: 10.3934/jimo.2009.5.719 |
[5] |
Rongfei Liu, Dingcheng Wang, Jiangyan Peng. Infinite-time ruin probability of a renewal risk model with exponential Levy process investment and dependent claims and inter-arrival times. Journal of Industrial and Management Optimization, 2017, 13 (2) : 995-1007. doi: 10.3934/jimo.2016058 |
[6] |
Tomasz R. Bielecki, Igor Cialenco, Marcin Pitera. A survey of time consistency of dynamic risk measures and dynamic performance measures in discrete time: LM-measure perspective. Probability, Uncertainty and Quantitative Risk, 2017, 2 (0) : 3-. doi: 10.1186/s41546-017-0012-9 |
[7] |
Eduardo Liz. A new flexible discrete-time model for stable populations. Discrete and Continuous Dynamical Systems - B, 2018, 23 (6) : 2487-2498. doi: 10.3934/dcdsb.2018066 |
[8] |
Ming Chen, Hao Wang. Dynamics of a discrete-time stoichiometric optimal foraging model. Discrete and Continuous Dynamical Systems - B, 2021, 26 (1) : 107-120. doi: 10.3934/dcdsb.2020264 |
[9] |
H. L. Smith, X. Q. Zhao. Competitive exclusion in a discrete-time, size-structured chemostat model. Discrete and Continuous Dynamical Systems - B, 2001, 1 (2) : 183-191. doi: 10.3934/dcdsb.2001.1.183 |
[10] |
Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete and Continuous Dynamical Systems - B, 2021, 26 (10) : 5197-5216. doi: 10.3934/dcdsb.2020339 |
[11] |
Ziyad AlSharawi, Nikhil Pal, Joydev Chattopadhyay. The role of vigilance on a discrete-time predator-prey model. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022017 |
[12] |
Martino Bardi, Shigeaki Koike, Pierpaolo Soravia. Pursuit-evasion games with state constraints: dynamic programming and discrete-time approximations. Discrete and Continuous Dynamical Systems, 2000, 6 (2) : 361-380. doi: 10.3934/dcds.2000.6.361 |
[13] |
Yinghua Dong, Yuebao Wang. Uniform estimates for ruin probabilities in the renewal risk model with upper-tail independent claims and premiums. Journal of Industrial and Management Optimization, 2011, 7 (4) : 849-874. doi: 10.3934/jimo.2011.7.849 |
[14] |
Sie Long Kek, Mohd Ismail Abd Aziz, Kok Lay Teo, Rohanin Ahmad. An iterative algorithm based on model-reality differences for discrete-time nonlinear stochastic optimal control problems. Numerical Algebra, Control and Optimization, 2013, 3 (1) : 109-125. doi: 10.3934/naco.2013.3.109 |
[15] |
Yun Kang. Permanence of a general discrete-time two-species-interaction model with nonlinear per-capita growth rates. Discrete and Continuous Dynamical Systems - B, 2013, 18 (8) : 2123-2142. doi: 10.3934/dcdsb.2013.18.2123 |
[16] |
Agnieszka B. Malinowska, Tatiana Odzijewicz. Optimal control of the discrete-time fractional-order Cucker-Smale model. Discrete and Continuous Dynamical Systems - B, 2018, 23 (1) : 347-357. doi: 10.3934/dcdsb.2018023 |
[17] |
Ferenc A. Bartha, Ábel Garab. Necessary and sufficient condition for the global stability of a delayed discrete-time single neuron model. Journal of Computational Dynamics, 2014, 1 (2) : 213-232. doi: 10.3934/jcd.2014.1.213 |
[18] |
Ka Chun Cheung, Hailiang Yang. Optimal investment-consumption strategy in a discrete-time model with regime switching. Discrete and Continuous Dynamical Systems - B, 2007, 8 (2) : 315-332. doi: 10.3934/dcdsb.2007.8.315 |
[19] |
Deepak Kumar, Ahmad Jazlan, Victor Sreeram, Roberto Togneri. Partial fraction expansion based frequency weighted model reduction for discrete-time systems. Numerical Algebra, Control and Optimization, 2016, 6 (3) : 329-337. doi: 10.3934/naco.2016015 |
[20] |
Sie Long Kek, Kok Lay Teo, Mohd Ismail Abd Aziz. Filtering solution of nonlinear stochastic optimal control problem in discrete-time with model-reality differences. Numerical Algebra, Control and Optimization, 2012, 2 (1) : 207-222. doi: 10.3934/naco.2012.2.207 |
2020 Impact Factor: 1.801
Tools
Metrics
Other articles
by authors
[Back to Top]