|
F. Alvarez
and H. Attouch
, An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping, Set-Valued Anal., 9 (2001)
, 3-11.
doi: 10.1023/A:1011253113155.
|
|
J. P. Aubin,
Optima and Equilibria: An Introduction to Nonlinear Analysis, Springer, Berlin, 1993.
|
|
H. H. Bauschke
and J. M. Borwein
, On projection algorithms for solving convex feasibility problem, SIAM Rev., 38 (1996)
, 367-426.
doi: 10.1137/S0036144593251710.
|
|
C. Byrne
, Iterative oblique projection onto convex sets and the split feasibility problem, Inverse Probl., 18 (2002)
, 441-453.
doi: 10.1088/0266-5611/18/2/310.
|
|
C. Byrne
, A unified treatment of some iterative algorithms in signal processing and image reconstruction, Inverse Probl., 20 (2004)
, 103-120.
doi: 10.1088/0266-5611/20/1/006.
|
|
A. Cegielski
, General method for solving the split common fixed point problems, J. Optim. Theory Appl., 165 (2015)
, 385-404.
doi: 10.1007/s10957-014-0662-z.
|
|
Y. Censor
and T. Elfving
, A multiprojection algorithm using Bregman projection in product space, Numer. Algor., 8 (1994)
, 221-239.
doi: 10.1007/BF02142692.
|
|
Y. Dang and Y. Gao, The strong convergence of a KM-CQ-like algorithm for a split feasibility problem, Inverse Probl. 27 (2011), 015007, 9pp.
doi: 10.1088/0266-5611/27/1/015007.
|
|
Y. Dang
, J. Sun
and H. Xu
, Inertial accelerated algorithms for solving a split feasibility problem, J. Ind. Manag. Optim., 13 (2017)
, 1383-1394.
doi: 10.3934/jimo.2016078.
|
|
Q. L. Dong
, H. B. Yuan
, Y. J. Cho
and Th. M. Rassias
, Modified inertial Mann algorithm and inertial CQ-algorithm for nonexpansive mappings, Optim. Lett., (2016)
, 1-16.
doi: 10.1007/s11590-016-1102-9.
|
|
M. Fukushima
, A relaxed projection method for variational inequalities, Math. Program., 35 (1986)
, 58-70.
doi: 10.1007/BF01589441.
|
|
S. He and Z. Zhao, Strong convergence of a relaxed CQ algorithm for the split feasibility problem,
J. Inqe. Appl. 2013 (2013), p197.
|
|
G. López, V. Martin-Marquez, F. H. Wang and H. K. Xu, Solving the split feasibility problem without prior knowledge of matrix norms, Inverse Probl. 28 (2012), 085004, 18pp.
doi: 10.1088/0266-5611/28/8/085004.
|
|
D. A. Lorenz
and T. Pock
, An inertial forward-backward algorithm for monotone inclusions, J. Math. Imaging Vis., 51 (2015)
, 311-325.
doi: 10.1007/s10851-014-0523-2.
|
|
P. E. Maingé
, Convergence theorems for inertial KM-type algorithms, J. Comput. Appl. Math., 219 (2008)
, 223-236.
doi: 10.1016/j.cam.2007.07.021.
|
|
P. E. Maingé
, Inertial iterative process for fixed points of certain quasi-nonexpansive mappings, Set Valued Anal., 15 (2007)
, 67-79.
doi: 10.1007/s11228-006-0027-3.
|
|
P. E. Maingé
, Approximation methods for common fixed points of nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl., 325 (2007)
, 469-479.
doi: 10.1016/j.jmaa.2005.12.066.
|
|
P. E. Maingé
, Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization, Set-Valued Anal., 16 (2008)
, 899-912.
doi: 10.1007/s11228-008-0102-z.
|
|
A. Moudafi
, Viscosity approximation methods for fixed-points problems, J. Math. Anal. Appl., 241 (2000)
, 46-55.
doi: 10.1006/jmaa.1999.6615.
|
|
A. Moudafi
and M. Oliny
, Convergence of a splitting inertial proximal method for monotone operators, J. Comput. Appl. Math., 155 (2003)
, 447-454.
doi: 10.1016/S0377-0427(02)00906-8.
|
|
Y. Nesterov
, A method for solving the convex programming problem with convergence rate (1/k2), Dokl. Akad. Nauk SSSR, 269 (1983)
, 543-547.
|
|
B. T. Polyak
, Some methods of speeding up the convergence of iteration methods, U. S. S. R. Comput. Math. Math. Phys., 4 (1964)
, 1-17.
|
|
R. T. Rockafellar
, Monotone operators and the proximal point algorithm, SIAM J. Control Optim., 14 (1976)
, 877-898.
doi: 10.1137/0314056.
|
|
F. Wang
, On the convergence of CQ algorithm with variable steps for the split equality problem, Numer. Algor., 74 (2017)
, 927-935.
doi: 10.1007/s11075-016-0177-9.
|
|
H. K. Xu
, A variable Krasonosel'skii-Mann algorithm and the multiple-set split feasibility problem, Inverse Probl., 22 (2006)
, 2021-2034.
doi: 10.1088/0266-5611/22/6/007.
|
|
H. K. Xu, Iterative methods for the split feasibility problem in infinite-dimensional Hilbert spaces,
Inverse Probl. 26 (2010), 105018, 17pp.
|
|
H. K. Xu
, Iterative algorithms for nonlinear operators, J. Lond. Math. Soc., 66 (2002)
, 240-256.
doi: 10.1112/S0024610702003332.
|
|
Q. Yang
, The relaxed CQ algorithm for solving the split feasibility problem, Inverse Probl., 20 (2004)
, 1261-1266.
doi: 10.1088/0266-5611/20/4/014.
|
|
Q. Yang
, On variable-set relaxed projection algorithm for variational inequalities, J. Math. Anal. Appl., 302 (2005)
, 166-179.
doi: 10.1016/j.jmaa.2004.07.048.
|