\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

The modified inertial relaxed CQ algorithm for solving the split feasibility problems

Abstract Full Text(HTML) Figure(12) / Table(3) Related Papers Cited by
  • In this work, we propose a new version of inertial relaxed CQ algorithms for solving the split feasibility problems in the frameworks of Hilbert spaces. We then prove its strong convergence by using a viscosity approximation method under some weakened assumptions. To be more precisely, the computation on the norm of operators and the metric projections is relaxed. Finally, we provide numerical experiments to illustrate the convergence behavior and to show the effectiveness of the sequences constructed by the inertial technique.

    Mathematics Subject Classification: 65K05, 65K10, 49J52.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Comparison of the iterations of Choice 1 in Example 1

    Figure 2.  Comparison of the iterations of Choice 2 in Example 1

    Figure 3.  Comparison of the iterations of Choice 3 in Example 1

    Figure 4.  Comparison of the iterations of Choice 4 in Example 1

    Figure 5.  Comparison of the iterations of Choice 1 in Example 2

    Figure 6.  Comparison of the iterations of Choice 2 in Example 2

    Figure 7.  Comparison of the iterations of Choice 3 in Example 2

    Figure 8.  Comparison of the iterations of Choice 4 in Example 2

    Figure 9.  Error ploting of Choice 1 in Example 1

    Figure 10.  Error ploting of Choice 2 in Example 1

    Figure 11.  Error ploting of Choice 3 in Example 1

    Figure 12.  Error ploting of Choice 4 in Example 1

    Table 1.  Algorithm 3.1 with different cases of $\rho_n$ and different choices of $x_0$ and $x_1$

    Case 1Case 2Case 3Case 4
    Choice 1No. of Iter.11854
    cpu (Time) $0.003553$ $0.002377$ $0.002195$ $0.002075$
    Choice 2No. of Iter.7644
    cpu (Time) $0.002799$ $0.002769$ $0.002357$ $0.002184$
    Choice 3No. of Iter.12964
    cpu (Time) $0.003828$ $0.002602$ $0.002401$ $0.002142$
    Choice 4No. of Iter.2717119
    cpu (Time) $0.007181$ $0.00343$ $0.002612$ $0.002431$
    The numerical experiments for each case of $\rho_{n}$ are shown in Figure 1-4, respectively.
     | Show Table
    DownLoad: CSV

    Table 2.  Algorithm 3.1 with different cases of $\rho_n$ and different choices of $x_0$ and $x_1$

    Case 1Case 2Case 3Case 4
    Choice 1No. of Iter.191055
    cpu (Time) $0.005632$ $0.003408$ $0.003223$ $0.002791$
    Choice 2No. of Iter.181066
    cpu (Time) $0.00391$ $0.002683$ $0.002447$ $0.002381$
    Choice 3No. of Iter.191066
    cpu (Time) $0.004233$ $0.003016$ $0.002601$ $0.002575$
    Choice 4No. of Iter.13766
    cpu (Time) $0.004812$ $0.003559$ $0.002922$ $0.002412$
    The numerical experiments are shown in Figure 5-8, respectively.
     | Show Table
    DownLoad: CSV

    Table 3.  Comparison of MIner-R-Iter, Iner-R-Iter and H-R-Iter in Example 1

    MIner-R-IterIner-R-IterH-R-Iter
    Choice 1 $u=(0, -1, -5)^T$No. of Iter.633223
    $x_{0}=(2, 6, -3)^T$cpu (Time)0.0007370.0076770.064889
    $x_{1}=(-2, -1, 8)^T$
    Choice 2$u=(2, 1, 0)^T$No. of Iter.426378
    $x_{0}=(3, 4, -1)^T$cpu (Time)0.0005220.0048610.137471
    $x_{1}=(-5, -2, 1)^T$
    Choice 3$u=(5, -3, -1)^T$No. of Iter.929140
    $x_{0}=(2, 1, -1)^T$cpu (Time)0.0014580.0051750.026824
    $x_{1}=(-5, 3, 5)^T$
    Choice 4$u=(-2, -1, 4)^T$No. of Iter.934763
    $x_{0}=(7.35, 1.75, -3.24)^T$cpu (Time)0.0014810.0080580.687214
    $x_{1}=(-6.34, 0.42, 7.36)^T$
    The error plotting of $E_n$ of MIner-R-Iter, Iner-R-Iter and H-R-Iter for each choice in Table 3 is shown in the following figures, respectively.
     | Show Table
    DownLoad: CSV
  •   F. Alvarez  and  H. Attouch , An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping, Set-Valued Anal., 9 (2001) , 3-11.  doi: 10.1023/A:1011253113155.
      J. P. Aubin, Optima and Equilibria: An Introduction to Nonlinear Analysis, Springer, Berlin, 1993.
      H. H. Bauschke  and  J. M. Borwein , On projection algorithms for solving convex feasibility problem, SIAM Rev., 38 (1996) , 367-426.  doi: 10.1137/S0036144593251710.
      C. Byrne , Iterative oblique projection onto convex sets and the split feasibility problem, Inverse Probl., 18 (2002) , 441-453.  doi: 10.1088/0266-5611/18/2/310.
      C. Byrne , A unified treatment of some iterative algorithms in signal processing and image reconstruction, Inverse Probl., 20 (2004) , 103-120.  doi: 10.1088/0266-5611/20/1/006.
      A. Cegielski , General method for solving the split common fixed point problems, J. Optim. Theory Appl., 165 (2015) , 385-404.  doi: 10.1007/s10957-014-0662-z.
      Y. Censor  and  T. Elfving , A multiprojection algorithm using Bregman projection in product space, Numer. Algor., 8 (1994) , 221-239.  doi: 10.1007/BF02142692.
      Y. Dang and Y. Gao, The strong convergence of a KM-CQ-like algorithm for a split feasibility problem, Inverse Probl. 27 (2011), 015007, 9pp. doi: 10.1088/0266-5611/27/1/015007.
      Y. Dang , J. Sun  and  H. Xu , Inertial accelerated algorithms for solving a split feasibility problem, J. Ind. Manag. Optim., 13 (2017) , 1383-1394.  doi: 10.3934/jimo.2016078.
      Q. L. Dong , H. B. Yuan , Y. J. Cho  and  Th. M. Rassias , Modified inertial Mann algorithm and inertial CQ-algorithm for nonexpansive mappings, Optim. Lett., (2016) , 1-16.  doi: 10.1007/s11590-016-1102-9.
      M. Fukushima , A relaxed projection method for variational inequalities, Math. Program., 35 (1986) , 58-70.  doi: 10.1007/BF01589441.
      S. He and Z. Zhao, Strong convergence of a relaxed CQ algorithm for the split feasibility problem, J. Inqe. Appl. 2013 (2013), p197.
      G. López, V. Martin-Marquez, F. H. Wang and H. K. Xu, Solving the split feasibility problem without prior knowledge of matrix norms, Inverse Probl. 28 (2012), 085004, 18pp. doi: 10.1088/0266-5611/28/8/085004.
      D. A. Lorenz  and  T. Pock , An inertial forward-backward algorithm for monotone inclusions, J. Math. Imaging Vis., 51 (2015) , 311-325.  doi: 10.1007/s10851-014-0523-2.
      P. E. Maingé , Convergence theorems for inertial KM-type algorithms, J. Comput. Appl. Math., 219 (2008) , 223-236.  doi: 10.1016/j.cam.2007.07.021.
      P. E. Maingé , Inertial iterative process for fixed points of certain quasi-nonexpansive mappings, Set Valued Anal., 15 (2007) , 67-79.  doi: 10.1007/s11228-006-0027-3.
      P. E. Maingé , Approximation methods for common fixed points of nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl., 325 (2007) , 469-479.  doi: 10.1016/j.jmaa.2005.12.066.
      P. E. Maingé , Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization, Set-Valued Anal., 16 (2008) , 899-912.  doi: 10.1007/s11228-008-0102-z.
      A. Moudafi , Viscosity approximation methods for fixed-points problems, J. Math. Anal. Appl., 241 (2000) , 46-55.  doi: 10.1006/jmaa.1999.6615.
      A. Moudafi  and  M. Oliny , Convergence of a splitting inertial proximal method for monotone operators, J. Comput. Appl. Math., 155 (2003) , 447-454.  doi: 10.1016/S0377-0427(02)00906-8.
      Y. Nesterov , A method for solving the convex programming problem with convergence rate (1/k2), Dokl. Akad. Nauk SSSR, 269 (1983) , 543-547. 
      B. T. Polyak , Some methods of speeding up the convergence of iteration methods, U. S. S. R. Comput. Math. Math. Phys., 4 (1964) , 1-17. 
      R. T. Rockafellar , Monotone operators and the proximal point algorithm, SIAM J. Control Optim., 14 (1976) , 877-898.  doi: 10.1137/0314056.
      F. Wang , On the convergence of CQ algorithm with variable steps for the split equality problem, Numer. Algor., 74 (2017) , 927-935.  doi: 10.1007/s11075-016-0177-9.
      H. K. Xu , A variable Krasonosel'skii-Mann algorithm and the multiple-set split feasibility problem, Inverse Probl., 22 (2006) , 2021-2034.  doi: 10.1088/0266-5611/22/6/007.
      H. K. Xu, Iterative methods for the split feasibility problem in infinite-dimensional Hilbert spaces, Inverse Probl. 26 (2010), 105018, 17pp.
      H. K. Xu , Iterative algorithms for nonlinear operators, J. Lond. Math. Soc., 66 (2002) , 240-256.  doi: 10.1112/S0024610702003332.
      Q. Yang , The relaxed CQ algorithm for solving the split feasibility problem, Inverse Probl., 20 (2004) , 1261-1266.  doi: 10.1088/0266-5611/20/4/014.
      Q. Yang , On variable-set relaxed projection algorithm for variational inequalities, J. Math. Anal. Appl., 302 (2005) , 166-179.  doi: 10.1016/j.jmaa.2004.07.048.
  • 加载中

Figures(12)

Tables(3)

SHARE

Article Metrics

HTML views(2221) PDF downloads(795) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return