October  2018, 14(4): 1651-1666. doi: 10.3934/jimo.2018025

A generalized approach to sparse and stable portfolio optimization problem

1. 

College of Mathematics and Statistics, Changsha University of Science and Technology, Hunan 410114, China

2. 

College of business, Central South University, Hunan 410083, China

3. 

Supply Chain and Logistics Optimization Research Centre, Faculty of Engineering, University of Windsor, Windsor, ON, Canada

* Corresponding author: Fenghua Wen

Received  August 2017 Published  January 2018

In this paper, we firstly examine the relation between the portfolio weights norm constraints method and the objective function regularization method in portfolio selection problems. We find that the portfolio weights norm constrained method mainly tries to obtain stable portfolios, however, the objective function regularization method mainly aims at obtaining sparse portfolios. Then, we propose some general sparse and stable portfolio models by imposing both portfolio weights norm constraints and objective function $L_{1}$ regularization term. Finally, three empirical studies show that the proposed strategies have better out-of-sample performance and lower turnover than many other strategies for tested datasets.

Citation: Zhifeng Dai, Fenghua Wen. A generalized approach to sparse and stable portfolio optimization problem. Journal of Industrial & Management Optimization, 2018, 14 (4) : 1651-1666. doi: 10.3934/jimo.2018025
References:
[1]

D. Bertsimas and R. Shioda, Algorithm for cardinality-constrained quadratic optimization, Computational Optimization and Applications, 43 (2009), 1-22.  doi: 10.1007/s10589-007-9126-9.  Google Scholar

[2]

F. Black and R. Litterman, Global portfolio optimization, Journal of Financial and Analysis, 48 (1992), 28-43.  doi: 10.2469/faj.v48.n5.28.  Google Scholar

[3]

J. BrodieI. DaubechiesC. De MolD. Giannone and I. Loris, Sparse and stable markowitz portfolios, Proceedings of the National Academy of Sciences of the United States of America, 106 (2009), 12267-12272.  doi: 10.1073/pnas.0904287106.  Google Scholar

[4]

P. BehrA. Guettler and F. Miebs, On portfolio optimization: Imposing the right constraints, Journal of Banking and Finance, 37 (2013), 1232-1242.   Google Scholar

[5]

P. Bonami and M. A. Lejeune, An exact solution approach for portfolio optimization problems under stochastic and integer constraints, Operational Research, 57 (2009), 650-670.  doi: 10.1287/opre.1080.0599.  Google Scholar

[6]

V. K. Chopra and W. T. Ziemba, The effect of errors in means, variance and covariances on optimal portfolio choice, Journal of Portfolio Management, 19 (1993), 6-11.   Google Scholar

[7]

C. H. Chen and Y. Y. Ye, Sparse portfolio selection via quasi-norm regularization, preprint, arXiv: 1312.6350, 2015. Google Scholar

[8]

X. T. CuiX. J. ZhengS. S. Zhu and X. L. Sun, Convex relaxations and MIQCQP reformulations for a class of cardinality-constrained portfolio selection problems, Journal of Global Optimization, 56 (2013), 1409-1423.  doi: 10.1007/s10898-012-9842-2.  Google Scholar

[9]

Z. F. DaiD. H. Li and F. H. Wen, Worse-case conditional value-at-risk for asymmetrically distributed asset scenarios returns, Journal of Computational Analysis and Application, 20 (2016), 237-251.   Google Scholar

[10]

Z. F. DaiX. H. Chen and F. H. Wen, A modified Perry's conjugate gradient method-based derivative-free method for solving large-scale nonlinear monotone equations, Applied Mathematics and Computation, 270 (2015), 378-386.  doi: 10.1016/j.amc.2015.08.014.  Google Scholar

[11]

V. DeMiguelL. Garlappi and R. Uppal, Optimal versus naive diversification: How ineffecient is the 1/n portfolio strategy?, Review of Financial Studies, 22 (2009), 1915-1953.  doi: 10.1093/acprof:oso/9780199744282.003.0034.  Google Scholar

[12]

V. DeMiguelL. GarlappiF. J. Nogales and R. Uppal, A generalized approach to portfolio optimization: Improving performance by constraining portfolio norms, Management Science, 55 (2009), 798-812.   Google Scholar

[13]

J. FanJ. Zhang and K. Yu, Vast portfolio selection with gross-exposure constraints, Journal of the American Statistical Association, 107 (2012), 592-606.  doi: 10.1080/01621459.2012.682825.  Google Scholar

[14]

B. FastrichS. Paterlini and P. Winker, Constructing optimal sparse portfolios using regularization methods, Computational Management Science, 12 (2015), 417-434.  doi: 10.1007/s10287-014-0227-5.  Google Scholar

[15]

A. Frangioni and C. Gentile, Perspective cuts for a class of convex 0-1 mixed integer programs, Mathematical Programming, 106 (2006), 225-236.  doi: 10.1007/s10107-005-0594-3.  Google Scholar

[16]

J. J. Gao and D. Li, Optimal cardinality constrained portfolio selection, Operational Research, 61 (2013), 745-761.  doi: 10.1287/opre.2013.1170.  Google Scholar

[17]

R. Green and B. Hollifield, When will mean-variance efficient portfolios be well diversified?, Journal of Finance, 47 (1992), 1785-1809.  doi: 10.1111/j.1540-6261.1992.tb04683.x.  Google Scholar

[18]

M. Grant and S. Boyd, CVX: Matlab software for disciplined convex programming, version 1. 21., http://cvxr.com/cvx. 2010. Google Scholar

[19]

W. James and C. Stein, Estimation with quadratic loss, Proc. 4th Berkeley Sympos. Probab. Statist., University of California Press, Berkeley, 1 (1961), 361--379.  Google Scholar

[20]

R. Jagannathan and T. Ma, Risk reduction in large portfolios: Why imposing the wrong constraints helps, Journal of Finance, 58 (2003), 1651-1684.   Google Scholar

[21]

O. Ledoit and M. Wolf, Improved estimation of the covariance matrix of stock returns with an application to portfolio selection, Journal of Empirical Finance, 10 (2003), 603-621.  doi: 10.1016/S0927-5398(03)00007-0.  Google Scholar

[22]

O. Ledoit and M. Wolf, A well-conditioned estimator for large-dimensional covariance matrices, Journal of Multivariate Analysis, 88 (2004), 365-411.  doi: 10.1016/S0047-259X(03)00096-4.  Google Scholar

[23]

D. LiX. L. Sun and J. Wang, Optimal lot solution to cardinality constrained mean-variance formulation for portfolio selection, Mathematical Finance, 16 (2006), 83-101.  doi: 10.1111/j.1467-9965.2006.00262.x.  Google Scholar

[24]

H. M. Markowitz, Portfolio selection, Journal of Finance, 7 (1952), 77-91.   Google Scholar

[25]

D. Maringer and H. Kellerer, Optimization of cardinality constrained portfolios with a hybrid local search algorithm, OR Spectrum, 25 (2003), 481-495.  doi: 10.1007/s00291-003-0139-1.  Google Scholar

[26]

D. X. ShawS. Liu and L. Kopman, Lagrangian relaxation procedure for cardinality-constrained portfolio optimization, Optimization Methods and Software, 23 (2008), 411-420.  doi: 10.1080/10556780701722542.  Google Scholar

[27]

F. H. WenZ. He and Z. Dai, Characteristics of Investors' Risk Preference for Stock Markets, Economic Computation and Economic Cybernetics Studies and Research, 48 (2014), 235-254.   Google Scholar

[28]

F. H. WenX. Gong and S. Cai, Forecasting the volatility of crude oil futures using HAR-type models with structural breaks, Energy Economics, 59 (2016), 400-413.  doi: 10.1016/j.eneco.2016.07.014.  Google Scholar

[29]

F. H. WenJ. Xiao and C. Huang, Interaction between oil and US dollar exchange rate: Nonlinear causality, time-varying influence and structural breaks in volatility, Applied Economics, 50 (2018), 319-334.  doi: 10.1080/00036846.2017.1321838.  Google Scholar

[30]

J. XieS. He and S. Zhang, Randomized portfolio selection, with constraints, Pacific Journal of Optimization, 4 (2008), 87-112.   Google Scholar

[31]

X. XingJ. J. Hub and Y. Yang, Robust minimum variance portfolio with L-infinity constraints, Journal of Banking and Finance, 46 (2014), 107-117.  doi: 10.1016/j.jbankfin.2014.05.004.  Google Scholar

[32]

F. M. XuG. Wang and Y. L. Gao, Nonconvex $L_{1/2}$ regularization for sparse portfolio selection, Pacific Journal of Optimization, 10 (2014), 163-176.   Google Scholar

[33]

X. J. ZhengX. L. Sun and D. Li, Improving the performance of MIQP solvers for quadratic programs with cardinality and minimum threshold constraints: A semidefinite program approach, INFORMS Journal of Computing, 26 (2014), 690-703.  doi: 10.1287/ijoc.2014.0592.  Google Scholar

show all references

References:
[1]

D. Bertsimas and R. Shioda, Algorithm for cardinality-constrained quadratic optimization, Computational Optimization and Applications, 43 (2009), 1-22.  doi: 10.1007/s10589-007-9126-9.  Google Scholar

[2]

F. Black and R. Litterman, Global portfolio optimization, Journal of Financial and Analysis, 48 (1992), 28-43.  doi: 10.2469/faj.v48.n5.28.  Google Scholar

[3]

J. BrodieI. DaubechiesC. De MolD. Giannone and I. Loris, Sparse and stable markowitz portfolios, Proceedings of the National Academy of Sciences of the United States of America, 106 (2009), 12267-12272.  doi: 10.1073/pnas.0904287106.  Google Scholar

[4]

P. BehrA. Guettler and F. Miebs, On portfolio optimization: Imposing the right constraints, Journal of Banking and Finance, 37 (2013), 1232-1242.   Google Scholar

[5]

P. Bonami and M. A. Lejeune, An exact solution approach for portfolio optimization problems under stochastic and integer constraints, Operational Research, 57 (2009), 650-670.  doi: 10.1287/opre.1080.0599.  Google Scholar

[6]

V. K. Chopra and W. T. Ziemba, The effect of errors in means, variance and covariances on optimal portfolio choice, Journal of Portfolio Management, 19 (1993), 6-11.   Google Scholar

[7]

C. H. Chen and Y. Y. Ye, Sparse portfolio selection via quasi-norm regularization, preprint, arXiv: 1312.6350, 2015. Google Scholar

[8]

X. T. CuiX. J. ZhengS. S. Zhu and X. L. Sun, Convex relaxations and MIQCQP reformulations for a class of cardinality-constrained portfolio selection problems, Journal of Global Optimization, 56 (2013), 1409-1423.  doi: 10.1007/s10898-012-9842-2.  Google Scholar

[9]

Z. F. DaiD. H. Li and F. H. Wen, Worse-case conditional value-at-risk for asymmetrically distributed asset scenarios returns, Journal of Computational Analysis and Application, 20 (2016), 237-251.   Google Scholar

[10]

Z. F. DaiX. H. Chen and F. H. Wen, A modified Perry's conjugate gradient method-based derivative-free method for solving large-scale nonlinear monotone equations, Applied Mathematics and Computation, 270 (2015), 378-386.  doi: 10.1016/j.amc.2015.08.014.  Google Scholar

[11]

V. DeMiguelL. Garlappi and R. Uppal, Optimal versus naive diversification: How ineffecient is the 1/n portfolio strategy?, Review of Financial Studies, 22 (2009), 1915-1953.  doi: 10.1093/acprof:oso/9780199744282.003.0034.  Google Scholar

[12]

V. DeMiguelL. GarlappiF. J. Nogales and R. Uppal, A generalized approach to portfolio optimization: Improving performance by constraining portfolio norms, Management Science, 55 (2009), 798-812.   Google Scholar

[13]

J. FanJ. Zhang and K. Yu, Vast portfolio selection with gross-exposure constraints, Journal of the American Statistical Association, 107 (2012), 592-606.  doi: 10.1080/01621459.2012.682825.  Google Scholar

[14]

B. FastrichS. Paterlini and P. Winker, Constructing optimal sparse portfolios using regularization methods, Computational Management Science, 12 (2015), 417-434.  doi: 10.1007/s10287-014-0227-5.  Google Scholar

[15]

A. Frangioni and C. Gentile, Perspective cuts for a class of convex 0-1 mixed integer programs, Mathematical Programming, 106 (2006), 225-236.  doi: 10.1007/s10107-005-0594-3.  Google Scholar

[16]

J. J. Gao and D. Li, Optimal cardinality constrained portfolio selection, Operational Research, 61 (2013), 745-761.  doi: 10.1287/opre.2013.1170.  Google Scholar

[17]

R. Green and B. Hollifield, When will mean-variance efficient portfolios be well diversified?, Journal of Finance, 47 (1992), 1785-1809.  doi: 10.1111/j.1540-6261.1992.tb04683.x.  Google Scholar

[18]

M. Grant and S. Boyd, CVX: Matlab software for disciplined convex programming, version 1. 21., http://cvxr.com/cvx. 2010. Google Scholar

[19]

W. James and C. Stein, Estimation with quadratic loss, Proc. 4th Berkeley Sympos. Probab. Statist., University of California Press, Berkeley, 1 (1961), 361--379.  Google Scholar

[20]

R. Jagannathan and T. Ma, Risk reduction in large portfolios: Why imposing the wrong constraints helps, Journal of Finance, 58 (2003), 1651-1684.   Google Scholar

[21]

O. Ledoit and M. Wolf, Improved estimation of the covariance matrix of stock returns with an application to portfolio selection, Journal of Empirical Finance, 10 (2003), 603-621.  doi: 10.1016/S0927-5398(03)00007-0.  Google Scholar

[22]

O. Ledoit and M. Wolf, A well-conditioned estimator for large-dimensional covariance matrices, Journal of Multivariate Analysis, 88 (2004), 365-411.  doi: 10.1016/S0047-259X(03)00096-4.  Google Scholar

[23]

D. LiX. L. Sun and J. Wang, Optimal lot solution to cardinality constrained mean-variance formulation for portfolio selection, Mathematical Finance, 16 (2006), 83-101.  doi: 10.1111/j.1467-9965.2006.00262.x.  Google Scholar

[24]

H. M. Markowitz, Portfolio selection, Journal of Finance, 7 (1952), 77-91.   Google Scholar

[25]

D. Maringer and H. Kellerer, Optimization of cardinality constrained portfolios with a hybrid local search algorithm, OR Spectrum, 25 (2003), 481-495.  doi: 10.1007/s00291-003-0139-1.  Google Scholar

[26]

D. X. ShawS. Liu and L. Kopman, Lagrangian relaxation procedure for cardinality-constrained portfolio optimization, Optimization Methods and Software, 23 (2008), 411-420.  doi: 10.1080/10556780701722542.  Google Scholar

[27]

F. H. WenZ. He and Z. Dai, Characteristics of Investors' Risk Preference for Stock Markets, Economic Computation and Economic Cybernetics Studies and Research, 48 (2014), 235-254.   Google Scholar

[28]

F. H. WenX. Gong and S. Cai, Forecasting the volatility of crude oil futures using HAR-type models with structural breaks, Energy Economics, 59 (2016), 400-413.  doi: 10.1016/j.eneco.2016.07.014.  Google Scholar

[29]

F. H. WenJ. Xiao and C. Huang, Interaction between oil and US dollar exchange rate: Nonlinear causality, time-varying influence and structural breaks in volatility, Applied Economics, 50 (2018), 319-334.  doi: 10.1080/00036846.2017.1321838.  Google Scholar

[30]

J. XieS. He and S. Zhang, Randomized portfolio selection, with constraints, Pacific Journal of Optimization, 4 (2008), 87-112.   Google Scholar

[31]

X. XingJ. J. Hub and Y. Yang, Robust minimum variance portfolio with L-infinity constraints, Journal of Banking and Finance, 46 (2014), 107-117.  doi: 10.1016/j.jbankfin.2014.05.004.  Google Scholar

[32]

F. M. XuG. Wang and Y. L. Gao, Nonconvex $L_{1/2}$ regularization for sparse portfolio selection, Pacific Journal of Optimization, 10 (2014), 163-176.   Google Scholar

[33]

X. J. ZhengX. L. Sun and D. Li, Improving the performance of MIQP solvers for quadratic programs with cardinality and minimum threshold constraints: A semidefinite program approach, INFORMS Journal of Computing, 26 (2014), 690-703.  doi: 10.1287/ijoc.2014.0592.  Google Scholar

Table 1.  List of Datasets
No.DatasetNumber of assetTime PeriodSourse
1FF-10010012/1992-12/2014K. French
2FF-484812/1992-12/2014K. French
3500 CRSP50004/1992-04/2014CRSP
4100 CRSP10004/1992-04/2014CRSP
5S&P 50046112/2007-12/2014Datastream
No.DatasetNumber of assetTime PeriodSourse
1FF-10010012/1992-12/2014K. French
2FF-484812/1992-12/2014K. French
3500 CRSP50004/1992-04/2014CRSP
4100 CRSP10004/1992-04/2014CRSP
5S&P 50046112/2007-12/2014Datastream
Table 2.  Portfolio variances of all considered portfolio strategies.
Dataset500 CRSP100 CRSPS&P 500FF-100FF48
Model 10.000490.001090.000600.000980.00119
Model 20.000420.001020.000520.000910.00111
1/N0.001720.001680.001790.002080.00232
MINC0.000940.001390.001080.001420.00141
NC1V0.000810.001190.000780.001210.00129
NC2V0.000730.001210.000840.001250.00132
NCFV0.000700.001230.000870.001200.00125
CC-Minvar0.000720.001130.000820.001020.00120
Dataset500 CRSP100 CRSPS&P 500FF-100FF48
Model 10.000490.001090.000600.000980.00119
Model 20.000420.001020.000520.000910.00111
1/N0.001720.001680.001790.002080.00232
MINC0.000940.001390.001080.001420.00141
NC1V0.000810.001190.000780.001210.00129
NC2V0.000730.001210.000840.001250.00132
NCFV0.000700.001230.000870.001200.00125
CC-Minvar0.000720.001130.000820.001020.00120
Table 3.  Out-of-sample Sharpe ratio of the portfolio strategies.
Dataset500 CRSP100 CRSPS&P 500FF-100FF48
Model 10.42780.44600.43140.39980.3146
Model 20.46360.45480.45680.40240.3220
1/N0.31020.33580.35860.28080.2524
MINC0.38820.36490.37230.31420.2712
NC1V0.40010.41220.40550.32240.2922
NC2V0.41510.42120.41860.35220.2916
NCFV0.40630.41360.40280.34580.2806
CC-Minvar0.40420.43260.41010.38750.3206
Dataset500 CRSP100 CRSPS&P 500FF-100FF48
Model 10.42780.44600.43140.39980.3146
Model 20.46360.45480.45680.40240.3220
1/N0.31020.33580.35860.28080.2524
MINC0.38820.36490.37230.31420.2712
NC1V0.40010.41220.40550.32240.2922
NC2V0.41510.42120.41860.35220.2916
NCFV0.40630.41360.40280.34580.2806
CC-Minvar0.40420.43260.41010.38750.3206
Table 4.  Turnover of the portfolio strategies.
Dataset500 CRSP100 CRSPS&P 500FF-100FF48
Model 10.40280.31240.41200.30680.2580
Model 20.41450.31820.41660.30220.2528
1/N0.06250.04450.05860.05080.0324
MINC0.31250.20250.40300.22210.1822
NC1V0.66540.46700.62080.53080.2822
NC2V0.60220.42490.60300.54210.3168
NCFV0.59480.41320.58700.51340.2762
CC-Minvar0.35420.28020.39800.26320.2356
Dataset500 CRSP100 CRSPS&P 500FF-100FF48
Model 10.40280.31240.41200.30680.2580
Model 20.41450.31820.41660.30220.2528
1/N0.06250.04450.05860.05080.0324
MINC0.31250.20250.40300.22210.1822
NC1V0.66540.46700.62080.53080.2822
NC2V0.60220.42490.60300.54210.3168
NCFV0.59480.41320.58700.51340.2762
CC-Minvar0.35420.28020.39800.26320.2356
[1]

Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023

[2]

Tengteng Yu, Xin-Wei Liu, Yu-Hong Dai, Jie Sun. Variable metric proximal stochastic variance reduced gradient methods for nonconvex nonsmooth optimization. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021084

[3]

Rafael G. L. D'Oliveira, Marcelo Firer. Minimum dimensional Hamming embeddings. Advances in Mathematics of Communications, 2017, 11 (2) : 359-366. doi: 10.3934/amc.2017029

[4]

Reza Lotfi, Yahia Zare Mehrjerdi, Mir Saman Pishvaee, Ahmad Sadeghieh, Gerhard-Wilhelm Weber. A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 221-253. doi: 10.3934/naco.2020023

[5]

Wenjuan Zhao, Shunfu Jin, Wuyi Yue. A stochastic model and social optimization of a blockchain system based on a general limited batch service queue. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1845-1861. doi: 10.3934/jimo.2020049

[6]

Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006

[7]

Christopher Bose, Rua Murray. Minimum 'energy' approximations of invariant measures for nonsingular transformations. Discrete & Continuous Dynamical Systems, 2006, 14 (3) : 597-615. doi: 10.3934/dcds.2006.14.597

[8]

Xingchun Wang, Yongjin Wang. Variance-optimal hedging for target volatility options. Journal of Industrial & Management Optimization, 2014, 10 (1) : 207-218. doi: 10.3934/jimo.2014.10.207

[9]

Shi'an Wang, N. U. Ahmed. Optimal control and stabilization of building maintenance units based on minimum principle. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1713-1727. doi: 10.3934/jimo.2020041

[10]

Peng Zhang, Yongquan Zeng, Guotai Chi. Time-consistent multiperiod mean semivariance portfolio selection with the real constraints. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1663-1680. doi: 10.3934/jimo.2020039

[11]

Yingxu Tian, Junyi Guo, Zhongyang Sun. Optimal mean-variance reinsurance in a financial market with stochastic rate of return. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1887-1912. doi: 10.3934/jimo.2020051

[12]

Yosra Soussi. Stable recovery of a non-compactly supported coefficient of a Schrödinger equation on an infinite waveguide. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021022

[13]

Yue Qi, Xiaolin Li, Su Zhang. Optimizing 3-objective portfolio selection with equality constraints and analyzing the effect of varying constraints on the efficient sets. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1531-1556. doi: 10.3934/jimo.2020033

[14]

Yohei Yamazaki. Center stable manifolds around line solitary waves of the Zakharov–Kuznetsov equation with critical speed. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3579-3614. doi: 10.3934/dcds.2021008

[15]

Sishu Shankar Muni, Robert I. McLachlan, David J. W. Simpson. Homoclinic tangencies with infinitely many asymptotically stable single-round periodic solutions. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3629-3650. doi: 10.3934/dcds.2021010

[16]

Eduardo Casas, Christian Clason, Arnd Rösch. Preface special issue on system modeling and optimization. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021008

[17]

Sarra Delladji, Mohammed Belloufi, Badreddine Sellami. Behavior of the combination of PRP and HZ methods for unconstrained optimization. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 377-389. doi: 10.3934/naco.2020032

[18]

Sumon Sarkar, Bibhas C. Giri. Optimal lot-sizing policy for a failure prone production system with investment in process quality improvement and lead time variance reduction. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021048

[19]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[20]

Claudia Lederman, Noemi Wolanski. An optimization problem with volume constraint for an inhomogeneous operator with nonstandard growth. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2907-2946. doi: 10.3934/dcds.2020391

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (960)
  • HTML views (2177)
  • Cited by (6)

Other articles
by authors

[Back to Top]