# American Institute of Mathematical Sciences

October  2018, 14(4): 1701-1726. doi: 10.3934/jimo.2018028

## Times until service completion and abandonment in an M/M/$m$ preemptive-resume LCFS queue with impatient customers

 Professor Emeritus, University of Tsukuba, Tsukuba Science City, Ibaraki 305-8573, Japan

The reviewing process of this paper was handled by Yutaka Takahashi and Wuyi Yue

Received  January 2017 Revised  June 2017 Published  October 2018 Early access  February 2018

Fund Project: The author is supported by the Grant-in-Aid for Scientific Research (C) No. 26330354 from the Japan Society for the Promotion of Science (JSPS) in the academic year 2016.

We consider an M/M/$m$ preemptive-resume last-come first-served (PR-LCFS) queue without exogenous priority classes of impatient customers. We focus on analyzing the time interval from the arrival to either service completion or abandonment for an arbitrary customer. We formulate the problem as a one-dimensional birth-and-death process with two absorbing states, and consider the first passage times in this process. We give explicit expressions for the probabilities of service completion and abandonment. Furthermore, we present sets of recursive computational formulas for calculating the mean and second moment of the times until service completion and abandonment. The two special cases of a preemptive-loss system and an ordinary M/M/$m$ queue with patient customers only, both incorporating the preemptive LCFS discipline, are treated separately. We show some numerical examples in order to demonstrate the computation of theoretical formulas.

Citation: Hideaki Takagi. Times until service completion and abandonment in an M/M/$m$ preemptive-resume LCFS queue with impatient customers. Journal of Industrial and Management Optimization, 2018, 14 (4) : 1701-1726. doi: 10.3934/jimo.2018028
##### References:
 [1] R. B. Cooper, Introduction to Queueing Theory, 2$^{nd}$ edition, Elsevier North Holland, New York, 1981. [2] N. Gautam, Analysis of Queues: Methods and Applications, CRC Press, Boca Raton, Florida, 2012. [3] B. V. Gnedenko and I. N. Kovalenko, Introduction to Queueing Theory, 2$^{nd}$ edition, revised and supplemented. Translated by Samuel Kotz, Springer-Verlag, New York, 1994. [4] F. Iravani and B. Balcio${\tilde {\rm g}}$lu, On priority queues with impatient customers, Queueing Systems, 58 (2008), 239-260.  doi: 10.1007/s11134-008-9069-6. [5] D. L. Jagerman, Difference Equations with Applications to Queues, Marcel Dekker, New York, 2000. [6] O. Jouini, Analysis of a last come first served queueing system with customer abandonment, Computers & Operations Research, 39 (2012), 3040-3045.  doi: 10.1016/j.cor.2012.03.009. [7] O. Jouini and A. Roubos, On multiple priority multi-server queues with impatience, Journal of the Operational Research Society, 65 (2014), 616-632. [8] G. P. Klimow, Bedienungsprozesse, Birkhäuser, Basel, 1979. [9] V. G. Kulkarni, Modeling and Analysis of Stochastic Systems, Chapman & Hall, Boca Raton, Florida, 1995. [10] A. Mandelbaum and S. Zeltyn, Service engineering in action: The Palm/Erlang-A queue, with applications to call centers, in Advances in Services Innovations (eds. D. Spath and K. -P. Fähnrich), Springer, (2007), 17-45 [11] A. Myskja and O. Espvik (editors), Tore Olaus Engset, 1865-1943, The Man Behind the Formula, Tapir Academic Press, Trondheim, Norway, 2002 [12] C. Palm, Etude des délais d'attente, Ericsson Technics, 5 (1937), 39-56, cited in [14]. [13] C. Palm, Research on telephone traffic carried by full availability groups, Tele, 1 (1957), 1-107 (English translation of results first published in 1946 in Swedish in the same journal, then entitled Tekniska Meddelanden från Kungliga Telegrafstyrelsen.), cited in [10] and [14]. [14] J. Riordan, Stochastic Service Systems, John Wiley & Sons, New York, 1962. [15] S. Subba Rao, Queuing with balking and reneging in M/G/1 systems, Metrika, (1967/68), 173-188.  doi: 10.1007/BF02613493. [16] H. Takagi, Waiting time in the M/M/$m / ( m + c )$ queue with impatient customers, International Journal of Pure and Applied Mathematics, 90 (2014), 519-559.  doi: 10.12732/ijpam.v90i4.13. [17] H. Takagi, Waiting time in the M/M/$m$ FCFS nonpreemptive priority queue with impatient customers, International Journal of Pure and Applied Mathematics, 97 (2014), 311-344.  doi: 10.12732/ijpam.v97i3.5. [18] H. Takagi, Waiting time in the M/M/$m$ LCFS nonpreemptive priority queue with impatient customers, Annals of Operations Research, 247 (2016), 257-289.  doi: 10.1007/s10479-015-1876-7. [19] H. Takagi, Times to service completion and abandonment in the M/M/$m$ preemptive LCFS queue with impatient customers QTNA'16, 2016, Wellington, New Zealand, ACM ISBN 978-1-4503-4842-3/16/12. doi: 10.1145/3016032.3016036. [20] H. M. Taylor and S. Karlin, An Introduction to Stochastic Modeling, 3$^{rd}$ edition, Academic Press, San Diego, California, 1998. [21] W. Whitt, Engineering solution of a basic call-center model, Management Science, 51 (2005), 221-235.  doi: 10.1287/mnsc.1040.0302. [22] R. W. Wolff, Stochastic Modeling and the Theory of Queues, Prentice Hall, Englewood Cliffs, New Jersey, 1989.

show all references

The reviewing process of this paper was handled by Yutaka Takahashi and Wuyi Yue

##### References:
 [1] R. B. Cooper, Introduction to Queueing Theory, 2$^{nd}$ edition, Elsevier North Holland, New York, 1981. [2] N. Gautam, Analysis of Queues: Methods and Applications, CRC Press, Boca Raton, Florida, 2012. [3] B. V. Gnedenko and I. N. Kovalenko, Introduction to Queueing Theory, 2$^{nd}$ edition, revised and supplemented. Translated by Samuel Kotz, Springer-Verlag, New York, 1994. [4] F. Iravani and B. Balcio${\tilde {\rm g}}$lu, On priority queues with impatient customers, Queueing Systems, 58 (2008), 239-260.  doi: 10.1007/s11134-008-9069-6. [5] D. L. Jagerman, Difference Equations with Applications to Queues, Marcel Dekker, New York, 2000. [6] O. Jouini, Analysis of a last come first served queueing system with customer abandonment, Computers & Operations Research, 39 (2012), 3040-3045.  doi: 10.1016/j.cor.2012.03.009. [7] O. Jouini and A. Roubos, On multiple priority multi-server queues with impatience, Journal of the Operational Research Society, 65 (2014), 616-632. [8] G. P. Klimow, Bedienungsprozesse, Birkhäuser, Basel, 1979. [9] V. G. Kulkarni, Modeling and Analysis of Stochastic Systems, Chapman & Hall, Boca Raton, Florida, 1995. [10] A. Mandelbaum and S. Zeltyn, Service engineering in action: The Palm/Erlang-A queue, with applications to call centers, in Advances in Services Innovations (eds. D. Spath and K. -P. Fähnrich), Springer, (2007), 17-45 [11] A. Myskja and O. Espvik (editors), Tore Olaus Engset, 1865-1943, The Man Behind the Formula, Tapir Academic Press, Trondheim, Norway, 2002 [12] C. Palm, Etude des délais d'attente, Ericsson Technics, 5 (1937), 39-56, cited in [14]. [13] C. Palm, Research on telephone traffic carried by full availability groups, Tele, 1 (1957), 1-107 (English translation of results first published in 1946 in Swedish in the same journal, then entitled Tekniska Meddelanden från Kungliga Telegrafstyrelsen.), cited in [10] and [14]. [14] J. Riordan, Stochastic Service Systems, John Wiley & Sons, New York, 1962. [15] S. Subba Rao, Queuing with balking and reneging in M/G/1 systems, Metrika, (1967/68), 173-188.  doi: 10.1007/BF02613493. [16] H. Takagi, Waiting time in the M/M/$m / ( m + c )$ queue with impatient customers, International Journal of Pure and Applied Mathematics, 90 (2014), 519-559.  doi: 10.12732/ijpam.v90i4.13. [17] H. Takagi, Waiting time in the M/M/$m$ FCFS nonpreemptive priority queue with impatient customers, International Journal of Pure and Applied Mathematics, 97 (2014), 311-344.  doi: 10.12732/ijpam.v97i3.5. [18] H. Takagi, Waiting time in the M/M/$m$ LCFS nonpreemptive priority queue with impatient customers, Annals of Operations Research, 247 (2016), 257-289.  doi: 10.1007/s10479-015-1876-7. [19] H. Takagi, Times to service completion and abandonment in the M/M/$m$ preemptive LCFS queue with impatient customers QTNA'16, 2016, Wellington, New Zealand, ACM ISBN 978-1-4503-4842-3/16/12. doi: 10.1145/3016032.3016036. [20] H. M. Taylor and S. Karlin, An Introduction to Stochastic Modeling, 3$^{rd}$ edition, Academic Press, San Diego, California, 1998. [21] W. Whitt, Engineering solution of a basic call-center model, Management Science, 51 (2005), 221-235.  doi: 10.1287/mnsc.1040.0302. [22] R. W. Wolff, Stochastic Modeling and the Theory of Queues, Prentice Hall, Englewood Cliffs, New Jersey, 1989.
State transitions for the customer behavior until service completion or abandonment
Mean number of customers in service and the probability of service completion
Mean number of waiting customers and the probability of abandonment
Mean number of customers in the system and the mean time until departure
Second and third moments of the time until departure
Conditional mean times until service completion and abandonment
Conditional second moments of the times until service completion and abandonment
Probabilities of service completion and abandonment and moments of the time until departure in an M/M/$m$ preemptive-loss LCFS system
Means and second moments of the times until service completion and abandonment in an M/M/$m$ preemptive-loss LCFS system
System and customer performance measures in an M/M/$m$ preemptive LCFS queue with patient customers only
Numerical example for the probabilities and moments of the times until service completion and abandonment
 Parameter setting: $m = 5, \mu = 1, \theta = 2$, and $\lambda = 10$ ($\rho = 2$ and $\theta = 2$). $k$ $P _k \{ {\rm Sr} \}$ $P _k \{ {\rm Ab} \}$ $E [ T _k ]$ $E [ T _k , {\rm Sr} ]$ $E [ T _k , {\rm Ab} ]$ $E [ T _k ^2 ]$ $E [ T _k ^2 , {\rm Sr} ]$ $E [ T _k ^2 , {\rm Ab} ]$ $E [ T _k ^3 ]$ 0 0.48730 0.51270 0.74365 0.19074 0.55291 0.93439 0.14509 0.78930 1.61923 1 0.43604 0.56396 0.71802 0.16108 0.55693 0.87910 0.12145 0.75765 1.50083 2 0.37451 0.62549 0.68726 0.13062 0.55663 0.81788 0.09902 0.71886 1.37535 3 0.29966 0.70034 0.64983 0.10014 0.54969 0.74997 0.07831 0.67166 1.24242 4 0.20717 0.79283 0.60358 0.07105 0.53254 0.67463 0.05990 0.61473 1.10179 5 0.09089 0.90911 0.54544 0.04579 0.49965 0.59124 0.04432 0.54692 0.95333 6 0.05093 0.94907 0.52546 0.03324 0.49223 0.55870 0.03623 0.52247 0.89240 7 0.03314 0.96686 0.51657 0.02601 0.49056 0.54257 0.03117 0.51141 0.86061 8 0.02376 0.97624 0.51188 0.02138 0.49050 0.53326 0.02764 0.50562 0.84136 9 0.01819 0.98181 0.50910 0.01820 0.49090 0.52729 0.02502 0.50227 0.82847 10 0.01459 0.98541 0.50730 0.01588 0.49142 0.52317 0.02297 0.50020 0.81921 11 0.01211 0.98789 0.50605 0.01411 0.49194 0.52017 0.02132 0.49885 0.81223 12 0.01031 0.98969 0.50516 0.01273 0.49243 0.51788 0.01995 0.49794 0.80675 13 0.00896 0.99104 0.50448 0.01161 0.49287 0.51609 0.01879 0.49730 0.80232 14 0.00790 0.99210 0.50395 0.01069 0.49326 0.51464 0.01780 0.49684 0.79865 15 0.00707 0.99293 0.50353 0.00991 0.49362 0.51345 0.01693 0.49652 0.79556 16 0.00638 0.99362 0.50319 0.00925 0.49394 0.51245 0.01617 0.49628 0.79292 17 0.00582 0.99418 0.50291 0.00868 0.49423 0.51159 0.01549 0.49611 0.79062 18 0.00534 0.99466 0.50267 0.00819 0.49449 0.51086 0.01488 0.49598 0.78860 19 0.00494 0.99506 0.50247 0.00775 0.49472 0.51022 0.01433 0.49589 0.78682 20 0.00459 0.99541 0.50229 0.00736 0.49493 0.50965 0.01383 0.49583 0.78522
 Parameter setting: $m = 5, \mu = 1, \theta = 2$, and $\lambda = 10$ ($\rho = 2$ and $\theta = 2$). $k$ $P _k \{ {\rm Sr} \}$ $P _k \{ {\rm Ab} \}$ $E [ T _k ]$ $E [ T _k , {\rm Sr} ]$ $E [ T _k , {\rm Ab} ]$ $E [ T _k ^2 ]$ $E [ T _k ^2 , {\rm Sr} ]$ $E [ T _k ^2 , {\rm Ab} ]$ $E [ T _k ^3 ]$ 0 0.48730 0.51270 0.74365 0.19074 0.55291 0.93439 0.14509 0.78930 1.61923 1 0.43604 0.56396 0.71802 0.16108 0.55693 0.87910 0.12145 0.75765 1.50083 2 0.37451 0.62549 0.68726 0.13062 0.55663 0.81788 0.09902 0.71886 1.37535 3 0.29966 0.70034 0.64983 0.10014 0.54969 0.74997 0.07831 0.67166 1.24242 4 0.20717 0.79283 0.60358 0.07105 0.53254 0.67463 0.05990 0.61473 1.10179 5 0.09089 0.90911 0.54544 0.04579 0.49965 0.59124 0.04432 0.54692 0.95333 6 0.05093 0.94907 0.52546 0.03324 0.49223 0.55870 0.03623 0.52247 0.89240 7 0.03314 0.96686 0.51657 0.02601 0.49056 0.54257 0.03117 0.51141 0.86061 8 0.02376 0.97624 0.51188 0.02138 0.49050 0.53326 0.02764 0.50562 0.84136 9 0.01819 0.98181 0.50910 0.01820 0.49090 0.52729 0.02502 0.50227 0.82847 10 0.01459 0.98541 0.50730 0.01588 0.49142 0.52317 0.02297 0.50020 0.81921 11 0.01211 0.98789 0.50605 0.01411 0.49194 0.52017 0.02132 0.49885 0.81223 12 0.01031 0.98969 0.50516 0.01273 0.49243 0.51788 0.01995 0.49794 0.80675 13 0.00896 0.99104 0.50448 0.01161 0.49287 0.51609 0.01879 0.49730 0.80232 14 0.00790 0.99210 0.50395 0.01069 0.49326 0.51464 0.01780 0.49684 0.79865 15 0.00707 0.99293 0.50353 0.00991 0.49362 0.51345 0.01693 0.49652 0.79556 16 0.00638 0.99362 0.50319 0.00925 0.49394 0.51245 0.01617 0.49628 0.79292 17 0.00582 0.99418 0.50291 0.00868 0.49423 0.51159 0.01549 0.49611 0.79062 18 0.00534 0.99466 0.50267 0.00819 0.49449 0.51086 0.01488 0.49598 0.78860 19 0.00494 0.99506 0.50247 0.00775 0.49472 0.51022 0.01433 0.49589 0.78682 20 0.00459 0.99541 0.50229 0.00736 0.49493 0.50965 0.01383 0.49583 0.78522
Numerical example for the probabilities and moments of the times until service completion and abandonment in special cases
 (a) M/M/$m$ preemptive-loss LCFS system: $m = 5, \mu = 1, \theta = \infty$, and $\lambda = 10$ ($\rho = 2$) $k$ $Q _k$ $P _k \{ {\rm Sr} \}$ $P _k \{ {\rm Ab} \}$ $E [ T _k ]$ $E [ T _k , {\rm Sr} ]$ $E [ T _k , {\rm Ab} ]$ $E [ T _k ^2 ]$ $E [ T _k ^2 , {\rm Sr} ]$ $E [ T _k ^2 , {\rm Ab} ]$ $E [ T _k ^3 ]$ 0 0.00068 0.43605 0.56395 0.43605 0.13781 0.29824 0.27561 0.07451 0.20111 0.22352 1 0.00677 0.37965 0.62035 0.37965 0.10798 0.27167 0.21597 0.05440 0.16157 0.16319 2 0.03384 0.31198 0.68802 0.31198 0.07783 0.23414 0.15567 0.03623 0.11944 0.10868 3 0.11279 0.22964 0.77036 0.22964 0.04839 0.18125 0.09678 0.02065 0.07613 0.06195 4 0.28198 0.12790 0.87210 0.12790 0.02143 0.10467 0.04286 0.00836 0.03450 0.02509 5 0.56395 0 1 0 0 0 0 0 0 0 (b) M/M/$m$ preemptive LCFS queue with patient customers only: $m = 5, \mu = 1, \theta = 0$, and $\lambda = 3$ ($\rho = 0.6$) $k$ $Q _k$ $E [ T _k ]$ $E [ T _k ^2 ]$ $E [ T _k ^3 ]$ $k$ $Q _k$ $E [ T _k ]$ $E [ T _k ^2 ]$ $E [ T _k ^3 ]$ 0 0.04665 1.11808 3.09648 16.5361 11 0.00441 5.07289 36.2624 351.529 1 0.13994 1.15743 3.38325 18.9517 12 0.00264 5.57289 42.5852 432.445 2 0.20991 1.22303 3.83497 22.6908 13 0.00159 6.07289 49.4081 524.721 3 0.20991 1.34111 4.59908 28.9123 14 0.00095 6.57289 56.7310 629.106 4 0.15743 1.57289 6.00215 40.1720 15 0.00057 7.07289 64.5539 746.350 5 0.09446 2.07289 8.82504 62.5736 16 0.00034 7.57289 72.8768 877.203 6 0.05668 2.57289 12.1479 91.0845 17 0.00021 8.07289 81.6997 1022.41 7 0.03401 3.07289 15.9708 126.455 18 0.00012 8.57289 91.0226 1182.73 8 0.02040 3.57289 20.2937 169.434 19 0.00007 9.07289 100.845 1358.91 9 0.01224 4.07289 25.1166 220.773 20 0.00004 9.57289 111.168 1151.69 10 0.00735 4.57289 30.4395 281.221 $E [ T _0 ^4 ] \approx 151.94$.
 (a) M/M/$m$ preemptive-loss LCFS system: $m = 5, \mu = 1, \theta = \infty$, and $\lambda = 10$ ($\rho = 2$) $k$ $Q _k$ $P _k \{ {\rm Sr} \}$ $P _k \{ {\rm Ab} \}$ $E [ T _k ]$ $E [ T _k , {\rm Sr} ]$ $E [ T _k , {\rm Ab} ]$ $E [ T _k ^2 ]$ $E [ T _k ^2 , {\rm Sr} ]$ $E [ T _k ^2 , {\rm Ab} ]$ $E [ T _k ^3 ]$ 0 0.00068 0.43605 0.56395 0.43605 0.13781 0.29824 0.27561 0.07451 0.20111 0.22352 1 0.00677 0.37965 0.62035 0.37965 0.10798 0.27167 0.21597 0.05440 0.16157 0.16319 2 0.03384 0.31198 0.68802 0.31198 0.07783 0.23414 0.15567 0.03623 0.11944 0.10868 3 0.11279 0.22964 0.77036 0.22964 0.04839 0.18125 0.09678 0.02065 0.07613 0.06195 4 0.28198 0.12790 0.87210 0.12790 0.02143 0.10467 0.04286 0.00836 0.03450 0.02509 5 0.56395 0 1 0 0 0 0 0 0 0 (b) M/M/$m$ preemptive LCFS queue with patient customers only: $m = 5, \mu = 1, \theta = 0$, and $\lambda = 3$ ($\rho = 0.6$) $k$ $Q _k$ $E [ T _k ]$ $E [ T _k ^2 ]$ $E [ T _k ^3 ]$ $k$ $Q _k$ $E [ T _k ]$ $E [ T _k ^2 ]$ $E [ T _k ^3 ]$ 0 0.04665 1.11808 3.09648 16.5361 11 0.00441 5.07289 36.2624 351.529 1 0.13994 1.15743 3.38325 18.9517 12 0.00264 5.57289 42.5852 432.445 2 0.20991 1.22303 3.83497 22.6908 13 0.00159 6.07289 49.4081 524.721 3 0.20991 1.34111 4.59908 28.9123 14 0.00095 6.57289 56.7310 629.106 4 0.15743 1.57289 6.00215 40.1720 15 0.00057 7.07289 64.5539 746.350 5 0.09446 2.07289 8.82504 62.5736 16 0.00034 7.57289 72.8768 877.203 6 0.05668 2.57289 12.1479 91.0845 17 0.00021 8.07289 81.6997 1022.41 7 0.03401 3.07289 15.9708 126.455 18 0.00012 8.57289 91.0226 1182.73 8 0.02040 3.57289 20.2937 169.434 19 0.00007 9.07289 100.845 1358.91 9 0.01224 4.07289 25.1166 220.773 20 0.00004 9.57289 111.168 1151.69 10 0.00735 4.57289 30.4395 281.221 $E [ T _0 ^4 ] \approx 151.94$.
 [1] Hideaki Takagi. Unified and refined analysis of the response time and waiting time in the M/M/m FCFS preemptive-resume priority queue. Journal of Industrial and Management Optimization, 2017, 13 (4) : 1945-1973. doi: 10.3934/jimo.2017026 [2] Yi Peng, Jinbiao Wu. Analysis of a batch arrival retrial queue with impatient customers subject to the server disasters. Journal of Industrial and Management Optimization, 2021, 17 (4) : 2243-2264. doi: 10.3934/jimo.2020067 [3] Zsolt Saffer, Wuyi Yue. A dual tandem queueing system with GI service time at the first queue. Journal of Industrial and Management Optimization, 2014, 10 (1) : 167-192. doi: 10.3934/jimo.2014.10.167 [4] Biao Xu, Xiuli Xu, Zhong Yao. Equilibrium and optimal balking strategies for low-priority customers in the M/G/1 queue with two classes of customers and preemptive priority. Journal of Industrial and Management Optimization, 2019, 15 (4) : 1599-1615. doi: 10.3934/jimo.2018113 [5] Massimiliano Tamborrino. Approximation of the first passage time density of a Wiener process to an exponentially decaying boundary by two-piecewise linear threshold. Application to neuronal spiking activity. Mathematical Biosciences & Engineering, 2016, 13 (3) : 613-629. doi: 10.3934/mbe.2016011 [6] Meiqiao Ai, Zhimin Zhang, Wenguang Yu. First passage problems of refracted jump diffusion processes and their applications in valuing equity-linked death benefits. Journal of Industrial and Management Optimization, 2022, 18 (3) : 1689-1707. doi: 10.3934/jimo.2021039 [7] Jacek Banasiak, Marcin Moszyński. Dynamics of birth-and-death processes with proliferation - stability and chaos. Discrete and Continuous Dynamical Systems, 2011, 29 (1) : 67-79. doi: 10.3934/dcds.2011.29.67 [8] Omer Gursoy, Kamal Adli Mehr, Nail Akar. Steady-state and first passage time distributions for waiting times in the $MAP/M/s+G$ queueing model with generally distributed patience times. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021078 [9] Balasubramanian Krishna Kumar, Ramachandran Navaneetha Krishnan, Rathinam Sankar, Ramasamy Rukmani. Analysis of dynamic service system between regular and retrial queues with impatient customers. Journal of Industrial and Management Optimization, 2022, 18 (1) : 267-295. doi: 10.3934/jimo.2020153 [10] Gopinath Panda, Veena Goswami. Effect of information on the strategic behavior of customers in a discrete-time bulk service queue. Journal of Industrial and Management Optimization, 2020, 16 (3) : 1369-1388. doi: 10.3934/jimo.2019007 [11] Qiuying Li, Lifang Huang, Jianshe Yu. Modulation of first-passage time for bursty gene expression via random signals. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1261-1277. doi: 10.3934/mbe.2017065 [12] Jacek Banasiak, Mustapha Mokhtar-Kharroubi. Universality of dishonesty of substochastic semigroups: Shattering fragmentation and explosive birth-and-death processes. Discrete and Continuous Dynamical Systems - B, 2005, 5 (3) : 529-542. doi: 10.3934/dcdsb.2005.5.529 [13] Veena Goswami, M. L. Chaudhry. Explicit results for the distribution of the number of customers served during a busy period for $M^X/PH/1$ queue. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021168 [14] Shaojun Lan, Yinghui Tang. Performance analysis of a discrete-time $Geo/G/1$ retrial queue with non-preemptive priority, working vacations and vacation interruption. Journal of Industrial and Management Optimization, 2019, 15 (3) : 1421-1446. doi: 10.3934/jimo.2018102 [15] Gábor Horváth, Zsolt Saffer, Miklós Telek. Queue length analysis of a Markov-modulated vacation queue with dependent arrival and service processes and exhaustive service policy. Journal of Industrial and Management Optimization, 2017, 13 (3) : 1365-1381. doi: 10.3934/jimo.2016077 [16] Tuan Phung-Duc, Ken'ichi Kawanishi. Multiserver retrial queue with setup time and its application to data centers. Journal of Industrial and Management Optimization, 2019, 15 (1) : 15-35. doi: 10.3934/jimo.2018030 [17] Zhanyou Ma, Wenbo Wang, Linmin Hu. Performance evaluation and analysis of a discrete queue system with multiple working vacations and non-preemptive priority. Journal of Industrial and Management Optimization, 2020, 16 (3) : 1135-1148. doi: 10.3934/jimo.2018196 [18] Ali Delavarkhalafi. On optimal stochastic jumps in multi server queue with impatient customers via stochastic control. Numerical Algebra, Control and Optimization, 2021  doi: 10.3934/naco.2021030 [19] Yen-Luan Chen, Chin-Chih Chang, Zhe George Zhang, Xiaofeng Chen. Optimal preventive "maintenance-first or -last" policies with generalized imperfect maintenance models. Journal of Industrial and Management Optimization, 2021, 17 (1) : 501-516. doi: 10.3934/jimo.2020149 [20] Achyutha Krishnamoorthy, Anu Nuthan Joshua. A ${BMAP/BMSP/1}$ queue with Markov dependent arrival and Markov dependent service batches. Journal of Industrial and Management Optimization, 2021, 17 (5) : 2925-2941. doi: 10.3934/jimo.2020101

2020 Impact Factor: 1.801