|
R. Andreani
, J. M. Martínez
, L. T. Santos
and B. F. Svaiter
, On the behaviour of constrained optimization methods when Lagrange multipliers do not exist, Optimization Methods and Software, 29 (2014)
, 646-657.
doi: 10.1080/10556788.2013.841692.
|
|
R. Andreani
, J. M. Martínez
and B. F. Svaiter
, A new sequential optimality condition for constrained optimization and algorithmic consequences, SIAM Journal on Optimization, 20 (2010)
, 3533-3554.
doi: 10.1137/090777189.
|
|
M. S. Bazaraa and C. M. Shetty,
Foundations of Optimization,
122 Springer-Verlag, Berlin/New York, 1976.
|
|
B. Byrd
, M. E. Hribar
and J. Nocedal
, An interior point algorithm for large-scale nonlinear programming, SIAM Journal on Optimization, 9 (1999)
, 877-900.
doi: 10.1137/S1052623497325107.
|
|
R. Fletcher
and S. Leyffer
, Nonlinear programming without a penalty function, Mathematical Programming, 91 (2002)
, 239-269.
doi: 10.1007/s101070100244.
|
|
P. E. Gill
, W. Murray
and M. A. Saunders
, SNOPT: An SQP algorithm for large-scale constrained optimization, SIAM Journal on Optimization, 12 (2002)
, 979-1006.
doi: 10.1137/S1052623499350013.
|
|
M. S. Gowda
and R. Sznajder
, A generalization of the Nash equilibrium theorem on bimatrix games, International Journal of Game Theory, 25 (1996)
, 1-12.
doi: 10.1007/BF01254380.
|
|
T. Hoheisel
, C. Kanzow
and A. Schwartz
, Theoretical and numerical comparison of relaxation methods for mathematical programs with complementarity constraints, Mathematical Programming Series A, 137 (2013)
, 257-288.
doi: 10.1007/s10107-011-0488-5.
|
|
C. Kanzow
, On the multiplier-penalty-approach for quasi-variational inequalities, Mathematical Programming Series A, 160 (2016)
, 33-63.
doi: 10.1007/s10107-015-0973-3.
|
|
C. Kanzow
and A. Schwartz
, A new regularization method for mathematical programs with complementarity constraints with strong convergence properties, SIAM Journal on Optimization, 23 (2013)
, 770-798.
doi: 10.1137/100802487.
|
|
C. Kanzow
and A. Schwartz
, Convergence properties of the inexact Lin-Fukushima relaxation method for mathematical programs with complementarity constraints, Computational Optimization and Applications, 59 (2014)
, 249-262.
doi: 10.1007/s10589-013-9575-2.
|
|
C. Kanzow
and A. Schwartz
, The price of inexactness: Convergence properties of relaxation methods for mathematical programs with complementarity constraints revisited, Mathematical Programming Series A, 40 (2015)
, 253-275.
doi: 10.1287/moor.2014.0667.
|
|
Y. Li
, T. Tan
and X. Li
, A log-exponential smoothing method for mathematical programs with complementarity constraints, Applied Mathematics and Computation, 218 (2012)
, 5900-5909.
doi: 10.1016/j.amc.2011.11.046.
|
|
Y. C. Liang,
Some Studies on Optimization Problems with Equilibrium Constraints, Ph. D thesis, Dalian University of Technology in Dalian, 2006.
|
|
Y. C. Liang
and G. H. Lin
, Stationaruty conditions and their reformulations for mathematical programs with vertical complementarity constraints, Journal of Optimization Theory and Applications, 154 (2012)
, 54-70.
doi: 10.1007/s10957-012-9992-x.
|
|
G. H. Lin
and M. Fukushima
, A modified relaxation scheme for mathematical programs with complementarity constraints, Annals of Operations Research, 133 (2005)
, 63-84.
doi: 10.1007/s10479-004-5024-z.
|
|
O. L. Mangasarian
, Equivalence of the complementarity problem to a system of nonlinear equations, SIAM Journal on Applied Mathematics, 31 (1976)
, 89-92.
doi: 10.1137/0131009.
|
|
J. M. Peng
and Z. H. Lin
, A non-interior continuation method for generalized linear complementarity problems, Mathematical Programming, 86 (1999)
, 533-563.
doi: 10.1007/s101070050104.
|
|
H. D. Qi
and L. Z. Liao
, A smoothing Newton method for extended vertical linear complementarity problems, SIAM Journal on Matrix Analysis and Applications, 21 (1999)
, 45-66.
doi: 10.1137/S0895479897329837.
|
|
L. Qi
and Z. Wei
, On the constant positive linear dependence condition and its application to SQP methods, SIAM Journal on Optimization, 10 (2000)
, 963-981.
doi: 10.1137/S1052623497326629.
|
|
H. Scheel
and S. Scholtes
, Mathematical programs with complementarity constraints: Stationarity, optimality, and sensitivity, Mathematics of Operations Ressearch, 25 (2000)
, 1-22.
doi: 10.1287/moor.25.1.1.15213.
|
|
S. Scholtes
, Convergence properties of a regularization scheme for mathematical programs with complementarity constraints, SIAM Journal on Optimization, 11 (2001)
, 918-936.
doi: 10.1137/S1052623499361233.
|
|
J. Stoer and C. Witzgall,
Convexity and Optimization in Finite Dimensions, 1nd edition, Springer-Verlag, New York, 1970.
|
|
A. Wächter
and L. T. Biegler
, On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programming, Mathematical Programming, 106 (2006)
, 25-57.
doi: 10.1007/s10107-004-0559-y.
|
|
H. J. Xiong
and B. Yu
, An aggergate deformation homotopy method for min-max-min problems with max-min constraints, Computational Optimization and Applications, 47 (2010)
, 501-527.
doi: 10.1007/s10589-008-9229-y.
|
|
H. Yin
and J. Zhang
, Global convergence of a smooth approximation method for mathematical programs with complementarity constraints, Mathematical Methods of Operations Research, 64 (2006)
, 255-269.
doi: 10.1007/s00186-006-0076-2.
|
|
J. Zhang
, S. Lin
and L. W. Zhang
, A log-exponential regularization method for a mathematical program with general vertical complementarity constraints, Journal of Industrial and management Optimization, 9 (2013)
, 561-577.
doi: 10.3934/jimo.2013.9.561.
|