• Previous Article
    Optimal design of finite precision and infinite precision non-uniform cosine modulated filter bank
  • JIMO Home
  • This Issue
  • Next Article
    The inexact log-exponential regularization method for mathematical programs with vertical complementarity constraints
January  2019, 15(1): 81-96. doi: 10.3934/jimo.2018033

Optimal stopping investment with non-smooth utility over an infinite time horizon

1. 

School of Mathematical Sciences, South China Normal University, Guangzhou 510631, China

2. 

Department of Applied Mathematics, The Hong Kong Polytechnic University, Hong Kong, China

3. 

School of Finance, Guangdong University of Foreign Studies, Guangzhou 510420, China

Received  March 2017 Revised  October 2017 Published  April 2018

Fund Project: This work was partially supported by Research Grants Council of Hong Kong under grant 519913, 15224215 and 15255416; NNSF of China (No. 11601163, No.11471276, No.11771158); NSF Guangdong Province of China (No.2016A030313448, No.2015A030313574, No.2017A030313397); The Humanities and Social Science Research Foundation of the Ministry of Education of China (No.15YJAZH051).

This study addresses an investment problem facing a venture fund manager who has a non-smooth utility function. The theoretical model characterizes an absolute performance-based compensation package. Technically, the research methodology features stochastic control and optimal stopping by formulating a free-boundary problem with a nonlinear equation, which is transferred to a new one with a linear equation. Numerical results based on simulations are presented to better illustrate this practical investment decision mechanism.

Citation: Xiaoshan Chen, Xun Li, Fahuai Yi. Optimal stopping investment with non-smooth utility over an infinite time horizon. Journal of Industrial & Management Optimization, 2019, 15 (1) : 81-96. doi: 10.3934/jimo.2018033
References:
[1]

A. BensoussanA. Cadenillas and H. K. Koo, Entrepreneurial decisions on effort and project with a nonconcave objective function, Mathematics of Operations Research, 40 (2015), 901-914.  doi: 10.1287/moor.2014.0702.  Google Scholar

[2]

A. Berger and G. F. Udell, The economics of small business finance: The roles of private equity and debt markets in the financial growth cycle, Journal of Banking and Finance, 22 (1998), 613-673.  doi: 10.2139/ssrn.137991.  Google Scholar

[3]

J. N. Carpenter, Does option compensation increase managarial risk appetite?, The Journal of Finance, 50 (2000), 2311-2331.   Google Scholar

[4]

S. Carter, C. Mason and S. Tagg, Lifting the barriers to growth in UK small businesses: The FSB biennial membership survey, Federation of Small Businesses, London, 2004. Google Scholar

[5]

C. Ceci and B. Bassan, Mixed optimal stopping and stochastic control problems with semicontinuous final reward for diffusion processes, Stochastics and Stochastics Reports, 76 (2004), 323-337.  doi: 10.1080/10451120410001728436.  Google Scholar

[6]

M. H. bChangT. Pang and J. Yong, Optimal stopping problem for stochastic differential equations with random coefficients, SIAM Journal on Control and Optimization, 48 (2009), 941-971.  doi: 10.1137/070705726.  Google Scholar

[7]

K. J. ChoiH. K. Koo and D. Y. Kwak, Optimal stopping of active portfolio management, Annals of Economics and Finance, 5 (2004), 93-126.   Google Scholar

[8]

J. ChuaJ. ChrismanF. Kellermanns and Z. Wu, Family involvement and new venture debt financing, Journal of Business Venturing, 26 (2011), 472-488.  doi: 10.1016/j.jbusvent.2009.11.002.  Google Scholar

[9]

D. Cumming and U. Walz, Private equity returns and disclosure around the world, Journal of International Business Studies, 41 (2010), 727-754.   Google Scholar

[10]

S. Dayanik and I. Karatzas, On the optimal stopping problem for one-dimensional diffusions, Stochastic Processes and their Applications, 107 (2003), 173-212.  doi: 10.1016/S0304-4149(03)00076-0.  Google Scholar

[11]

R. J. Elliott and P. E. Kopp, Mathematics of Financial Markets, Springer-Verlag, New York, 1999.  Google Scholar

[12]

W. Fleming and H. Soner, Controlled Markov Processes and Viscosity Solutions, Springer-Verlag, New York, 1993.  Google Scholar

[13]

V. Henderson and D. Hobson, An explicit solution for an optimal stopping/optimal control problem which models an asset sale, The Annals of Applied Probability, 18 (2008), 1681-1705.  doi: 10.1214/07-AAP511.  Google Scholar

[14]

X. LiX. Y. Zhou and A. E. B. Lim, Dynamic mean-variance portfolio selection with no-shorting constraints, SIAM Journal on Control and Optimization, 40 (2002), 1540-1555.  doi: 10.1137/S0363012900378504.  Google Scholar

[15]

X. Li and X. Y. Zhou, Continuous-time mean-variance efficiency: The 80 % rule, The Annals of Applied Probability, 16 (2006), 1751-1763.  doi: 10.1214/105051606000000349.  Google Scholar

[16]

G. Peskir and A. Shiryaev, Optimal Stopping and Free-Boundary Problems, 2nd edition. Birkhäuser Verlag, Berlin, 2006.  Google Scholar

[17]

A. ShiryaevZ. Q. Xu and X. Y. Zhou, Thou shalt buy and hold, Quantitative Finance, 8 (2008), 765-776.  doi: 10.1080/14697680802563732.  Google Scholar

[18]

J. Sparrow and P. Bentley, Decision tendencies of entrepreneurs and small business risk management practices, Risk Management, 2 (2000), 17-26.  doi: 10.1057/palgrave.rm.8240037.  Google Scholar

[19]

G. L. Xu and S. E. Shreve, A duality method for optimal consumption and investment under short-selling prohibition: Ⅱ. constant market coefficients, Annals of Applied Probability, 2 (1992), 314-328.  doi: 10.1214/aoap/1177005706.  Google Scholar

[20]

J. Yong and X. Y. Zhou, Stochastic Controls: Hamiltonian Systems and HJB Equations, Springer-Verlag, New York, 1999.  Google Scholar

show all references

References:
[1]

A. BensoussanA. Cadenillas and H. K. Koo, Entrepreneurial decisions on effort and project with a nonconcave objective function, Mathematics of Operations Research, 40 (2015), 901-914.  doi: 10.1287/moor.2014.0702.  Google Scholar

[2]

A. Berger and G. F. Udell, The economics of small business finance: The roles of private equity and debt markets in the financial growth cycle, Journal of Banking and Finance, 22 (1998), 613-673.  doi: 10.2139/ssrn.137991.  Google Scholar

[3]

J. N. Carpenter, Does option compensation increase managarial risk appetite?, The Journal of Finance, 50 (2000), 2311-2331.   Google Scholar

[4]

S. Carter, C. Mason and S. Tagg, Lifting the barriers to growth in UK small businesses: The FSB biennial membership survey, Federation of Small Businesses, London, 2004. Google Scholar

[5]

C. Ceci and B. Bassan, Mixed optimal stopping and stochastic control problems with semicontinuous final reward for diffusion processes, Stochastics and Stochastics Reports, 76 (2004), 323-337.  doi: 10.1080/10451120410001728436.  Google Scholar

[6]

M. H. bChangT. Pang and J. Yong, Optimal stopping problem for stochastic differential equations with random coefficients, SIAM Journal on Control and Optimization, 48 (2009), 941-971.  doi: 10.1137/070705726.  Google Scholar

[7]

K. J. ChoiH. K. Koo and D. Y. Kwak, Optimal stopping of active portfolio management, Annals of Economics and Finance, 5 (2004), 93-126.   Google Scholar

[8]

J. ChuaJ. ChrismanF. Kellermanns and Z. Wu, Family involvement and new venture debt financing, Journal of Business Venturing, 26 (2011), 472-488.  doi: 10.1016/j.jbusvent.2009.11.002.  Google Scholar

[9]

D. Cumming and U. Walz, Private equity returns and disclosure around the world, Journal of International Business Studies, 41 (2010), 727-754.   Google Scholar

[10]

S. Dayanik and I. Karatzas, On the optimal stopping problem for one-dimensional diffusions, Stochastic Processes and their Applications, 107 (2003), 173-212.  doi: 10.1016/S0304-4149(03)00076-0.  Google Scholar

[11]

R. J. Elliott and P. E. Kopp, Mathematics of Financial Markets, Springer-Verlag, New York, 1999.  Google Scholar

[12]

W. Fleming and H. Soner, Controlled Markov Processes and Viscosity Solutions, Springer-Verlag, New York, 1993.  Google Scholar

[13]

V. Henderson and D. Hobson, An explicit solution for an optimal stopping/optimal control problem which models an asset sale, The Annals of Applied Probability, 18 (2008), 1681-1705.  doi: 10.1214/07-AAP511.  Google Scholar

[14]

X. LiX. Y. Zhou and A. E. B. Lim, Dynamic mean-variance portfolio selection with no-shorting constraints, SIAM Journal on Control and Optimization, 40 (2002), 1540-1555.  doi: 10.1137/S0363012900378504.  Google Scholar

[15]

X. Li and X. Y. Zhou, Continuous-time mean-variance efficiency: The 80 % rule, The Annals of Applied Probability, 16 (2006), 1751-1763.  doi: 10.1214/105051606000000349.  Google Scholar

[16]

G. Peskir and A. Shiryaev, Optimal Stopping and Free-Boundary Problems, 2nd edition. Birkhäuser Verlag, Berlin, 2006.  Google Scholar

[17]

A. ShiryaevZ. Q. Xu and X. Y. Zhou, Thou shalt buy and hold, Quantitative Finance, 8 (2008), 765-776.  doi: 10.1080/14697680802563732.  Google Scholar

[18]

J. Sparrow and P. Bentley, Decision tendencies of entrepreneurs and small business risk management practices, Risk Management, 2 (2000), 17-26.  doi: 10.1057/palgrave.rm.8240037.  Google Scholar

[19]

G. L. Xu and S. E. Shreve, A duality method for optimal consumption and investment under short-selling prohibition: Ⅱ. constant market coefficients, Annals of Applied Probability, 2 (1992), 314-328.  doi: 10.1214/aoap/1177005706.  Google Scholar

[20]

J. Yong and X. Y. Zhou, Stochastic Controls: Hamiltonian Systems and HJB Equations, Springer-Verlag, New York, 1999.  Google Scholar

Figure .  The free boundaries $x^*$ and $\bar x$ change when $\alpha$ changes
Figure .  The free boundaries $x^*$ and $\bar x$ change when $\alpha$ changes
Figure .  The free boundaries $x^*$ and $\bar x$ change when $K$ changes
[1]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[2]

José Madrid, João P. G. Ramos. On optimal autocorrelation inequalities on the real line. Communications on Pure & Applied Analysis, 2021, 20 (1) : 369-388. doi: 10.3934/cpaa.2020271

[3]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[4]

Sergio Conti, Georg Dolzmann. Optimal laminates in single-slip elastoplasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 1-16. doi: 10.3934/dcdss.2020302

[5]

Tommi Brander, Joonas Ilmavirta, Petteri Piiroinen, Teemu Tyni. Optimal recovery of a radiating source with multiple frequencies along one line. Inverse Problems & Imaging, 2020, 14 (6) : 967-983. doi: 10.3934/ipi.2020044

[6]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[7]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[8]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[9]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[10]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[11]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[12]

Zonghong Cao, Jie Min. Selection and impact of decision mode of encroachment and retail service in a dual-channel supply chain. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020167

[13]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[14]

Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure & Applied Analysis, 2021, 20 (1) : 55-75. doi: 10.3934/cpaa.2020257

[15]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[16]

Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020449

[17]

Héctor Barge. Čech cohomology, homoclinic trajectories and robustness of non-saddle sets. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020381

[18]

Ying Lin, Qi Ye. Support vector machine classifiers by non-Euclidean margins. Mathematical Foundations of Computing, 2020, 3 (4) : 279-300. doi: 10.3934/mfc.2020018

[19]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[20]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (203)
  • HTML views (1180)
  • Cited by (1)

Other articles
by authors

[Back to Top]