\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Effect of Bitcoin fee on transaction-confirmation process

  • * Corresponding author: Shoji Kasahara

    * Corresponding author: Shoji Kasahara 

The first author is supported in part by SCAT Foundation, and Japan Society for the Promotion of Science under Grant-in-Aid for Scientific Research (B) No. 15H04008

Abstract / Introduction Full Text(HTML) Figure(8) / Table(6) Related Papers Cited by
  • In Bitcoin system, transactions are prioritized according to transaction fees. Transactions without fees are given low priority and likely to wait for confirmation. Because the demand of micro payment in Bitcoin is expected to increase due to low remittance cost, it is important to quantitatively investigate how transactions with small fees of Bitcoin affect the transaction-confirmation time. In this paper, we analyze the transaction-confirmation time by queueing theory. We model the transaction-confirmation process of Bitcoin as a priority queueing system with batch service, deriving the mean transaction-confirmation time. Numerical examples show how the demand of transactions with low fees affects the transaction-confirmation time. We also consider the effect of the maximum block size on the transaction-confirmation time.

    Mathematics Subject Classification: Primary: 68M20, 60K25; Secondary: 90B22.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Trend of fee-amount distribution over time

    Figure 2.  Trend of transaction-arrival rates of two priority classes

    Figure 3.  Relative frequency and exponential probability density function of block-generation time

    Figure 4.  Comparison of analysis and simulation for the transaction-confirmation time: Two-priority case

    Figure 5.  Mean transaction-confirmation time: classless case

    Figure 6.  Mean transaction-confirmation time: two-priority case. ($\lambda_H = 0.90466$)

    Figure 7.  Mean transaction-confirmation time: high priority case. The ratio of $\lambda_H$ to $\lambda_L$ is fixed, and the overall arrival rate $\lambda$ changes

    Figure 8.  Mean transaction-confirmation time: low priority case. The ratio of $\lambda_H$ to $\lambda_L$ is fixed, and the overall arrival rate $\lambda$ changes

    Table 1.  Block-generation time

    Mean [s]544.09
    Variance $2.9277 \times 10^{5}$
    Maximum [s]6,524
    Minimum [s]0
    Median [s]377
     | Show Table
    DownLoad: CSV

    Table 2.  Number of transactions in a block

    Mean [transactions]529.27
    Variance $2.5152 \times 10^5$
    Maximum [transactions]12,239
    Minimum [transactions]0
    Median [transactions]386
     | Show Table
    DownLoad: CSV

    Table 3.  Transaction size in byte

    Mean571.34
    Variance $3.7445\times 10^6$
    Maximum999657
    Minimum62
    Median259
     | Show Table
    DownLoad: CSV

    Table 4.  Cumulative frequency of fee amount for transactions

    BTCFrequency
    01378501
    0.000013050709
    0.000142881857
    0.00160723356
    0.0161219997
    0.161236481
    161236972
    1061237045
     | Show Table
    DownLoad: CSV

    Table 5.  Transaction-type statistics

    StatisticClasslessHL
    Number of transactions61,353,01457,058,9474,294,067
    Mean TCT [s]1075.0874.133744.1
    Variance of TCT $1.8989 \times 10^8$ $8.4505 \times 10^7$ $1.5826 \times 10^9$
    Maximum of TCT $3.1045\times 10^7$ $3.1045\times 10^7$ $2.6244\times 10^7$
    Minimum of TCT000
    Median of TCT510502640
    Mean arrival rate0.972750.904660.068082
     | Show Table
    DownLoad: CSV

    Table 6.  Comparison of analysis and measurement for the transaction-confirmation time

    Transaction TypeArrival RateMeasurementAnalysis
    Classless0.972751,075.0568.10
    H0.90466874.13562.16
    L0.0680823,744.1647.05
     | Show Table
    DownLoad: CSV
  •   E. Androulaki , G. O. Karame , M. Roeschlin , T. Scherer  and  S. Capkun , Evaluating user privacy in Bitcoin, The 17th International Conference on Financial Cryptography and Data Security, (2013) , 34-51.  doi: 10.1007/978-3-642-39884-1_4.
      A. M. Antonopoulos, Mastering Bitcoin, O'Reilly, 2014.
      T. Bamert , C. Decker , L. Elsen , R. Wattenhofer  and  S. Welten , Have a snack, pay with Bitcoins, 2013 IEEE Thirteenth International Conference on Peer-to-Peer Computing, (2013) , 1-5.  doi: 10.1109/P2P.2013.6688717.
      R. Böhme , N. Christin , B. Edelman  and  T. Moore , Bitcoin: Economics, technology, and governance, Journal of Economic Perspectives, 29 (2015) , 213-238. 
      J. Bonneau , A. Miller , J. Clark , A. Narayanan , J. A. Kroll  and  E. W. Felten , SoK: Research perspectives and challenges for Bitcoin and cryptocurrencies, IEEE Symposium on Security and Privacy, (2015) , 104-121.  doi: 10.1109/SP.2015.14.
      M. L. Chaudhry  and  J. G. C. Templeton , The queuing system M/$ \mbox{G}^{\text B} $/1 and its ramifications, European Journal of Operational Research, 6 (1981) , 56-60.  doi: 10.1016/0377-2217(81)90328-3.
      M. L. Chaudhry and J. G. C. Templeton, A First Course in Bulk Queues, John Wiley & Sons, 1983.
      C. Decker  and  R. Wattenhofer , Information propagation in the Bitcoin network, 13th IEEE International Conference on Peer-to-Peer Computing, (2013) , 1-10.  doi: 10.1109/P2P.2013.6688704.
      J. Göbel , H. P. Keeler , A. E. Krzesinski  and  P. G. Taylor , Bitcoin blockchain dynamics: The selfish-mine strategy in the presence of propagation delay, Performance Evaluation, 104 (2016) , 23-41. 
      G. O. Karame , E. Androulaki  and  S. Capkun , Double-spending fast payments in Bitcoin, The 2012 ACM Conference on Computer and Communications Security, (2012) , 906-917.  doi: 10.1145/2382196.2382292.
      A. Kiayias and G. Panagiotakos, Speed-security tradeoffs in blockchain protocols, IACR: Cryptology ePrint Archive, 2015.
      S. Kotz and S. Nadarajah, Extreme Value Distributions Theory and Applications, Imperial College Press, 2000.
      M. Möser and R. Böhome, Trends, tips, tolls: A longitudinal study of Bitcoin transaction fees, Financial Cryptography and Data Security, Lecture Notes in Computer Science, Springer, 8976 (2015), 19-33.
      S. Nakamoto, Bitcoin: A peer-to-peer electronic cash system, (2008). Available from https://bitcoin.org/bitcoin.pdf.
      R. Peter, A transaction fee market exists without a block size limit, (2015). Available from https://scalingbitcoin.org/papers/feemarket.pdf
      Y. Sompolinsky and A. Zohar, Accelerating Bitcoin's transaction processing. Fast money grows on trees, not chains, IACR: Cryptology ePrint Archive, 2013, Available from https://eprint.iacr.org/2013/881.
      Y. Sompolinsky  and  A. Zohar , Secure high-rate transaction processing in Bitcoin, 19th International Conference on Financial Cryptography and Data Security, 8975 (2015) , 507-527. 
      H. Takagi, Queueing Analysis: A Foundation of Performance Evaluation, North-Holland Publishing Co., Amsterdam, 1993.
      F. Tschorsch  and  B. Scheuermann , Bitcoin and beyond: A technical survey on decentralized digital currencies, IEEE Communications Surveys & Tutorials, 18 (2016) , 2084-2123.  doi: 10.1109/COMST.2016.2535718.
      R. W. Wolff, Stochastic Modeling and the Theory of Queues, Prentice Hall, 1989.
      https://bitnodes.21.co/.
      https://blockchain.info/.
      https://cdecker.github.io/btcresearch/.
      https://en.bitcoin.it/wiki/Confirmation.
      https://en.bitcoin.it/wiki/Scalability.
      https://en.bitcoin.it/wiki/Transaction_fees.
  • 加载中

Figures(8)

Tables(6)

SHARE

Article Metrics

HTML views(5868) PDF downloads(1447) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return