\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A class of two-stage distributionally robust games

  • * Corresponding author

    * Corresponding author
Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • An $ N $-person noncooperative game under uncertainty is analyzed, in which each player solves a two-stage distributionally robust optimization problem that depends on a random vector as well as on other players' decisions. Particularly, a special case is considered, where the players' optimization problems are linear at both stages, and it is shown that the Nash equilibrium of this game can be obtained by solving a conic linear variational inequality problem.

    Mathematics Subject Classification: 90C15, 90C47.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  •   M. Aghassi  and  D. Bertsimas , Robust game theory, Mathematical Programming, 107 (2006) , 231-273.  doi: 10.1007/s10107-005-0686-0.
      J. Ang , F. Meng  and  J. Sun , Two-stage stochastic linear programs with incomplete information on uncertainty, European Journal of Operational Research, 233 (2014) , 16-22.  doi: 10.1016/j.ejor.2013.07.039.
      A. Ben-Tal, L. El Ghaoui and A. Nemirovski, Robust Optimization, Princeton University Press, Princeton and Oxford, 2009.
      A. Ben-Tal  and  A. Nemirovski , Robust optimization--methodology and applications, Mathematical Programming Series B, 92 (2002) , 453-480.  doi: 10.1007/s101070100286.
      A. Bensoussan , Points de Nash dans le cas de fontionnelles quadratiques et jeux differentiels lineaires a N personnes, SIAM Journal on Control, 12 (1974) , 460-499.  doi: 10.1137/0312037.
      D. Bertsimas and R. Freund, Data, Models, and Decisions: The Fundamentals of Management Science, South-Western College Publishing, Cincinnati, 2000.
      X. Chen , M. Sim , J. Sun  and  C.-P. Teo , From CVaR to uncertainty set: Implications in joint chance constrained optimization, Operations Research, 58 (2010) , 470-485.  doi: 10.1287/opre.1090.0712.
      X. Chen , M. Sim , P. Sun  and  J. Zhang , A linear-decision based approximation approach to stochastic programming, Operations Research, 56 (2008) , 344-357.  doi: 10.1287/opre.1070.0457.
      E. Delage  and  Y. Ye , Distributionally robust optimization under moment uncertainty with application to data-driven problems, Operations Research, 58 (2010) , 595-612.  doi: 10.1287/opre.1090.0741.
      G. Dhaene  and  J. Bouckaert , Sequential reciprocity in two-player, two-stage games: An experimental analysis, Games and Economic behavior, 70 (2010) , 289-303.  doi: 10.1016/j.geb.2010.02.009.
      J. Dupacova , The minimax approach to stochastic programming and an illustrative application, Stochastics, 20 (1987) , 73-88.  doi: 10.1080/17442508708833436.
      F. Facchinei , A. Fischer  and  V. Piccialli , On generalized Nash games and variational inequalities, Operations Research Letters, 35 (2007) , 159-164.  doi: 10.1016/j.orl.2006.03.004.
      F. Facchinei  and  C. Kanzow , Generalized Nash equilibrium problems, Annals of Operations Research, 175 (2010) , 177-211.  doi: 10.1007/s10479-009-0653-x.
      F. Facchinei and J. S. Pang, Nash Equilibria: The Variational Approach, In Y. Eldar and D. Palomar, editors, Convex Optimization in Signal Processing and Communications. Cambridge University Press, Cambridge, England, 2010,443-493.
      F. Facchinei and J. S. Pang, Finite-dimensional Variational Inequalities and Complementarity Problems, Springer-Verlag, New York, 2003.
      S. Gao , L. Kong  and  J. Sun , Two-stage stochastic linear programs with moment information on uncertainty, Optimization, 63 (2014) , 829-837.  doi: 10.1080/02331934.2014.906598.
      S. Gao , J. Sun  and  S. Wu , A semi-infinite programming approach to two-stage stochastic linear programs with high-order moment constraints, Optimization Letters, (2016) , 1-11.  doi: 10.1007/s11590-016-1095-4.
      J. Goh  and  M. Sim , Distributionally robust optimization and its tractable approximations, Operations Research, 58 (2010) , 902-917.  doi: 10.1287/opre.1090.0795.
      P. T. Harker , Generalized Nash games and quasi-variational inequalities, European Journal of Operational Research, 54 (1991) , 81-94.  doi: 10.1016/0377-2217(91)90325-P.
      P. T. Harker  and  J. S. Pang , Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications, Mathematical Programming Series B, 48 (1990) , 161-220.  doi: 10.1007/BF01582255.
      S. Hayashi , N. Yamashita  and  M. Fukushima , Robust Nash equilibria and second-order cone complementarity problems, Journal of Nonlinear and Convex Analysis, 6 (2005) , 283-296. 
      R. Hettich  and  K. O. Kortanek , Semi-infinite programming: Theory, methods, and applications, SIAM Review, 35 (1993) , 380-429.  doi: 10.1137/1035089.
      P. Kall and S. W. Wallace, Stochastic Programming, Chichester: Wiley, 1994.
      A. Kannan , U. V. Shanbhag  and  H. M. Kim , Addressing supply-side risk in uncertain power markets: Stochastic Nash models, scalable algorithms and error analysis, Optimization Methods and Software, 28 (2013) , 1095-1138.  doi: 10.1080/10556788.2012.676756.
      H. J. Landau, Moments in Mathematics: Lecture Notes Prepared for the AMS Short Course, American Mathematical Society, San Antonio, Texas, USA, 1987.
      A. Ling , J. Sun , N. Xiu  and  X. Yang , Two-stage stochastic linear optimization with risk aversion and robustness, European Journal of Operational Research, 256 (2017) , 215-229.  doi: 10.1016/j.ejor.2016.06.017.
      A. Ling , J. Sun  and  X. Yang , Robust tracking error portfolio selection with worst-case downside risk measures, Journal of Economic Dynamics and Control, 39 (2014) , 178-207.  doi: 10.1016/j.jedc.2013.11.011.
      D. Monderer  and  L. S. Shapley , Potential games, Games and Economic Behavior, 14 (1996) , 124-143.  doi: 10.1006/game.1996.0044.
      J. F. Nash , Equilibrium points in n-person games, Proceedings of the National Academy of Sciences, 36 (1950) , 48-49.  doi: 10.1073/pnas.36.1.48.
      J. F. Nash , Non-cooperative games, Annals of Mathematics, 54 (1951) , 286-295.  doi: 10.2307/1969529.
      R. Nishimura , S. Hayashi  and  M. Fukushima , Semidefinite complementarity reformulation for robust Nash equilibrium problems with Euclidean uncertainty sets, Journal of Global Optimization, 53 (2012) , 107-120.  doi: 10.1007/s10898-011-9719-9.
      R. Nishimura , S. Hayashi  and  M. Fukushima , Robust Nash equilibria in N-person noncooperative games: Uniqueness and reformulation, Pacific Journal of Optimization, 5 (2009) , 237-259. 
      J. S. Pang  and  M. Fukushima , Quasi-variational inequalities, generalized Nash equilibria, and multi-leader-follower games, Computational Management Science, 2 (2005) , 21-56.  doi: 10.1007/s10287-004-0010-0.
      J. S. Pang , S. Sen  and  U. Shanbhag , Two-Stage non-cooperative games with risk-Averse players, Mathematical Programming Series B, 165 (2017) , 235-290.  doi: 10.1007/s10107-017-1148-1.
      R. T. Rockafellar, Conjugate Duality and Optimization, SIAM, Philadelphia, 1974.
      R. T. Rockafellar  and  R. J.-B. Wets , Stochastic variational inequalities: Single-stage to multistage, Mathematical Programming Series B, 165 (2017) , 331-360.  doi: 10.1007/s10107-016-0995-5.
      H. Scarf, A min-max solution of an inventory problem, in Studies in The Mathematical Theory of Inventory and Production (eds. K. J. Arrow, S. Karlin and H. E. Scarf), Stanford University Press, (1958), 201-209.
      G. Scutari , D. P. Palomar , F. Facchinei  and  J. S. Pang , Convex optimization, game theory, and variational inequality theory, IEEE Signal Processing Magazine, 27 (2010) , 35-49. 
      R. M. Sheremeta , Experimental comparison of multi-stage and one-stage contests, Games and Economic Behavior, 68 (2010) , 731-747.  doi: 10.1016/j.geb.2009.08.001.
      M. Sion , On general minimax theorems, Pacific Journal of Mathematics, 8 (1958) , 171-176.  doi: 10.2140/pjm.1958.8.171.
      J. Sun , L.-Z. Liao  and  B. Rodrigues , Quadratic two-stage stochastic optimization with coherent measures of risk, Mathematical Programming, 168 (2018) , 599-613.  doi: 10.1007/s10107-017-1131-x.
      J. Sun, K. Tsai and L. Qi, A simplex method for network programs with convex separable piecewise linear costs and its application to stochastic transshipment problems, in: Network Optimization Problems: Algorithms, Applications and Complexity, D. Z. Du and P. M. Pardalos eds. World Scientific Publishing Co. London, (1993), 281-300.
      D. Topkis, Supermodularity and Complementarity, Princeton University Press, New Jersey, 1998
      W. Wiesemman , D. Kuhn  and  M. Sim , Distributionally robust convex optimization, Operations Research, 62 (2014) , 1358-1376.  doi: 10.1287/opre.2014.1314.
      L. Ye , Indicative bidding and a theory of two-stage auctions, Games and Economic Behavior, 58 (2007) , 181-207.  doi: 10.1016/j.geb.2005.12.004.
  • 加载中
SHARE

Article Metrics

HTML views(4830) PDF downloads(648) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return