[1]
|
X. L. Bai, Z. H. Huang and Y. Wang, Global uniqueness and solvability for tensor complementarity problems, J. Optim. Theory Appl., 170 (2016), 72-84.
doi: 10.1007/s10957-016-0903-4.
|
[2]
|
L. Castello and H. Clercx, Geometrical statistics of the vorticity vector and the strain rate tensor in rotating turbulence, J. Turbul., 14 (2013), 19-36.
doi: 10.1080/14685248.2013.866241.
|
[3]
|
M. L. Che, L. Q. Qi and Y. M. Wei, Positive-definite tensors to nonlinear complementarity problems, J. Optim. Theory Appl., 168 (2016), 475-487.
doi: 10.1007/s10957-015-0773-1.
|
[4]
|
H. B. Chen, Y. N. Chen, G. Y. Li and L. Q. Qi, A semi-definite program approach for computing the maximum eigenvalue of a class of structured tensors and its applications in hypergraphs and copositivity test, Numer. Lin. Alg. Appl., 25 (2018), e2125.
|
[5]
|
H. B. Chen, Z. H. Huang and L. Q. Qi, Copositivity detection of tensors: Theory and algorithm, J. Optim. Theory Appl., 174 (2017), 746-761.
doi: 10.1007/s10957-017-1131-2.
|
[6]
|
H. B. Chen, Z. H. Huang and L. Q. Qi, Copositive tensor detection and its applications in physics and hypergraphs, Comput. Optim. Appl., 69 (2018), 133-158.
doi: 10.1007/s10589-017-9938-1.
|
[7]
|
H. B. Chen, L. Q. Qi and Y. S. Song, Column sufficient tensors and tensor complementarity problems, Front. Math. China, (2018), 255-276.
doi: 10.1007/s11464-018-0681-4.
|
[8]
|
H. B. Chen and Y. J. Wang, On computing minimal H-eigenvalue of sign-structured tensors, Front. Math. China., 12 (2017), 1289-1302.
doi: 10.1007/s11464-017-0645-0.
|
[9]
|
R. W. Cottle, J. S. Pang and R. E. Stone, The Linear Complementarity Problem, SIAM Series in Classics in Applied Mathematics, 2009.
|
[10]
|
W. Y. Ding, Z. Y. Luo and L. Q. Qi, $ P $-tensors, $ P_0 $-tensors, and tensor complementarity problem, preprint, arXiv: 1507.06731.
|
[11]
|
F. Facchinei and J. S. Pang, Finite-dimensional Variational Inequalities and Complementarity Problems, Springer Series in Operations Research and Financial Engineering, 2003.
|
[12]
|
G. Golub and C. Loan, Matrix Computations. Johns Hopkins series in the mathematical sciences, Johns Hopkins University Press, Baltimore, MD, 1989.
|
[13]
|
M. S. Gowda, Z. Y. Luo, L. Q. Qi and N. H. Xiu,
$ Z $-tensors and complementarity problems, preprint, arXiv: 1510.07933.
|
[14]
|
Z. H. Huang and L. Q. Qi, Formulating an n-person noncooperative game as a tensor complementarity problem, Comput. Optim. Appl., 66 (2017), 557-576.
doi: 10.1007/s10589-016-9872-7.
|
[15]
|
Z. H. Huang, Y. Y. Suo and J. Wang, On $ Q $-Tensors, preprint, arXiv: 1509.03088.
|
[16]
|
M. Kojima, N. Megiddo and T. Noma,
A Unified Approach to Interior-point Algorithms for Linear Complementarity Problems, in: Lecture Notes in Computer Science, vol. 538, Springer Verlag, Berlin, Germany, 1991.
|
[17]
|
M. Kojima, T. Noma and A. Yoshise, Global convergence in infeasible-interior-point algorithms, Math. Program., 65 (1994), 43-72.
doi: 10.1007/BF01581689.
|
[18]
|
T. Kolda and B. Bader, Tensor decompositions and applications, SIAM Rev., 51 (2009), 455-500.
doi: 10.1137/07070111X.
|
[19]
|
Z. Y. Luo, L. Q. Qi and N. H. Xiu, The sparsest solutions to $ Z $-tensor complementarity problems, Optim. Lett., 11 (2017), 471-482.
doi: 10.1007/s11590-016-1013-9.
|
[20]
|
F. M. Ma, Y. J. Wang and H. Zhao, A potential reduction algorithm for generalized linear complementarity problem over a polyhedral cone, J. Ind. Manag. Optim., 6 (2010), 259-267.
|
[21]
|
H. Mansouri and M. Pirhaji, An adaptive infeasible interior-point algorithm for linear complementarity problems, J. Oper. Res. Soc., 1 (2013), 523-536.
doi: 10.1007/s40305-013-0031-x.
|
[22]
|
M. Preiß and J. Stoer, Analysis of infeasible-interior-point paths arising with semidefinite linear complementarity problems, Math. Program., 99 (2004), 499-520.
doi: 10.1007/s10107-003-0463-x.
|
[23]
|
L. Q. Qi, Eigenvalues of a real supersymmetric tensor, J. Symb. Comput., 40 (2005), 1302-1324.
doi: 10.1016/j.jsc.2005.05.007.
|
[24]
|
L. Q. Qi, Y. J. Wang and E. Wu, D-eigenvalues of diffusion kurtosis tensors, J. Comput. Appl. Math., 221 (2008), 150-157.
doi: 10.1016/j.cam.2007.10.012.
|
[25]
|
L. Q. Qi, F. Wang and Y. J. Wang, Z-eigenvalue methods for a global polynomial optimization problem, Math. Program., 118 (2009), 301-316.
doi: 10.1007/s10107-007-0193-6.
|
[26]
|
L. Q. Qi, G. H. Yu and E. Wu, Higher order positive semidefinite diffusion tensor imaging, SIAM J. Imaging Sci., 3 (2010), 416-433.
doi: 10.1137/090755138.
|
[27]
|
D. Savostyanov, Tensor algorithms of blind separation of electromagnetic signals, Russ. J. Numer. Anal. M., 25 (2010), 375-393.
|
[28]
|
E. Simantiraki and D. Shanno, An infeasible-interior-point method for linear complementarity problems, SIAM J. Optim., 7 (1997), 620-640.
doi: 10.1137/S1052623495282882.
|
[29]
|
Y. S. Song and L. Q. Qi, Properties of tensor complementarity problem and some classes of structured tensors, Ann. Appl. Math., 33 (2017), 308-323.
doi: 10.1007/s10957-014-0616-5.
|
[30]
|
Y. S. Song and L. Q. Qi, Properties of some classes of structured tensors, J. Optim. Theory Appl., 165 (2015), 854-873.
doi: 10.1007/s10957-014-0616-5.
|
[31]
|
Y. S. Song and L. Q. Qi, Strictly semi-positive tensors and the boundedness of tensor complementarity problems, Optim. Lett., 11 (2017), 1407-1426.
doi: 10.1007/s11590-016-1104-7.
|
[32]
|
Y. S. Song and G. H. Yu, Properties of solution set of tensor complementarity problem, J. Optim. Theory Appl., 170 (2016), 85-96.
doi: 10.1007/s10957-016-0907-0.
|
[33]
|
K. Tanabe, Centered Newton method for mathematical programming, System Modelling Opt., 113 (1988), 197-206.
|
[34]
|
M. Todd and Y. Ye, A centered projective algorithm for linear programming, Math. Oper. Res., 15 (1990), 508-529.
doi: 10.1287/moor.15.3.508.
|
[35]
|
T. Wang, R. Monteiro and J. S. Pang, An interior point potential reduction method for constrained equations, Math. Program., 74 (1996), 159-195.
doi: 10.1007/BF02592210.
|
[36]
|
Y. J. Wang, L. Caccetta and G. L. Zhou, Convergence analysis of a block improvement method for polynomial optimization over unit spheres, Numer. Lin. Alg. Appl., 22 (2015), 1059-1076.
doi: 10.1002/nla.1996.
|
[37]
|
Y. J. Wang, L. Q. Qi and X. Z. Zhang, A practical method for computing the largest M-eigenvalue of a fourth-order partially symmetric tensor, Numer. Lin. Alg. Appl., 16 (2009), 589-601.
|
[38]
|
Y. J. Wang, G. Zhou and L. Caccetta, Nonsingular $ H $-tensor and its cariteria, J. Ind. Manag. Optim., 12 (2016), 1173-1186.
doi: 10.3934/jimo.2016.12.1173.
|
[39]
|
Y. J. Wang, K. L. Zhang and H. C. Sun, Criteria for strong $ H $-tensors, Front. Math. China, 11 (2016), 577-592.
doi: 10.1007/s11464-016-0525-z.
|
[40]
|
Y. Wang, Z. H. Huang and X. L. Bai, Exceptionally regular tensors and tensor complementarity problems, Optim. Methods Softw., 31 (2016), 815-828.
doi: 10.1080/10556788.2016.1180386.
|
[41]
|
S. L. Xie, D. H. Li and H. R. Xu, An iterative method for finding the least solution of the tensor complementarity problem with $ Z $-Tensor, J. Optim. Theory Appl., 175 (2017), 119-136.
doi: 10.1007/s10957-017-1157-5.
|
[42]
|
K. L. Zhang and Y. J. Wang, An $ H $-tensor based iterative scheme for identifying the positive definiteness of multivariate homogeneous forms, J. Comput. Appl. Math., 305 (2016), 1-10.
doi: 10.1016/j.cam.2016.03.025.
|
[43]
|
G. Zou, X. Chen and Z. J. Wang, Underdetermined joint blind source separation for two datasets based on tensor decomposition, IEEE Signal Proc. Lett., 23 (2016), 673-677.
doi: 10.1109/LSP.2016.2546687.
|