
-
Previous Article
Higher-order weak radial epiderivatives and non-convex set-valued optimization problems
- JIMO Home
- This Issue
-
Next Article
A potential reduction method for tensor complementarity problems
Dynamic optimal decision making for manufacturers with limited attention based on sparse dynamic programming
1. | School of Accountancy, Hunan University of Finance and Economics, Changsha 410205, China |
2. | Business School, Central South University, Changsha 410083, China |
3. | Department of Mathematics and Statistics, Curtin University, Australia |
In a fully competitive industry, the market demand is changing rapidly. Thus, it is important for manufacturers to manage their inventory effectively as well as to determine the best order quantity and optimal production strategy. In this paper, our concern is how shall a manufacturer with limited attention determine his optimal order quantity and optimal production strategy in an environment when many factors are volatile, such as the price of raw materials (respectively, finished goods) and attrition rate of inventory of raw materials (respectively, finished product). Under this environment, it is observed, according to various empirical studies, that decision makers tend to focus their attention on factors with major changes. Taking all these into account, our problem is formulated as a discrete-time stochastic dynamic programming. We propose a general approach based on the sparse dynamic programming method to solve this multidimensional dynamic programming problem. From the numerical examples solved using the proposed method, it is interesting to observe that decision makers with limited attention do not adjust their final decision when the volatility is small.
References:
[1] |
A. B. Abel, J. C. Eberly and S. Panageas,
Optimal inattention to the stock market with information costs and transactions costs, Econometrica, 81 (2013), 1455-1481.
doi: 10.3982/ECTA7624. |
[2] |
R. Akella, V. F. Araman and J. Kleinknecht, B2B Markets: Procuremen and Supplier Risk Management in E-Business, in Supply chain management: models, applications, and research directions, Springer, (2005), 33-66. Google Scholar |
[3] |
P. Berling and V. Martínez-de-Albéniz,
Optimal inventory policies when purchase price and demand are stochastic, Operations Research, 59 (2011), 109-124.
doi: 10.1287/opre.1100.0862. |
[4] |
P. Berling and K. Rosling,
The effects of financial risks on inventory policy, Management Science, 51 (2002), 1804-1815.
doi: 10.1287/mnsc.1050.0435. |
[5] |
W. Bi, G. Li and M. Liu,
Dynamic pricing with stochastic reference effects based on a finite memory window, International Journal of Production Research, 55 (2017), 3331-3348.
doi: 10.1080/00207543.2016.1221160. |
[6] |
W. Bi, L. Tian, H. LIu and X. Chen, A stochastic dynamic programming approach based on bounded rationality and application to dynamic portfolio choice, Discrete Dynamics in Nature and Society, 2014 (2014), Article ID 840725, 11pages. |
[7] |
A. Bouras and L. Tadj,
Production planning in a three-stock reverse-logistics system with deteriorating items under a continuous review policy, Journal of Industrial and Management Optimization, 11 (2015), 1041-1058.
doi: 10.3934/jimo.2015.11.1041. |
[8] |
J.-M. Chen and C.-S. Lin, An optimal replenishment model for inventory items with normally distributed deterioration, Production Planning and Control, 13 (2002), 470-480. Google Scholar |
[9] |
S. K. Devalkar, R. Anupindi and A. Sinha,
Integrated optimization of procurement, processing, and trade of commodities, Operations Research, 59 (2011), 1369-1381.
doi: 10.1287/opre.1110.0959. |
[10] |
D. Duffie and T. Sun,
Transactions costs and portfolio choice in a discrete-continuous-time setting, Journal of Economic Dynamics and Control, 14 (1990), 35-51.
doi: 10.1016/0165-1889(90)90004-Z. |
[11] |
Q. Fu, C. Y. Lee and C. P. Teo, Procurement management using option contracts: Random spot price and the portfolio effect, IIE Transactions, 42 (2010), 793-811. Google Scholar |
[12] |
X. Gabaix,
A sparsity-based model of bounded rationality, Quarterly Journal of Economics, 129 (2014), 1661-1710.
doi: 10.3386/w16911. |
[13] |
X. Gabaix, Sparse Dynamic Programming and Aggregate Fluctuations, Working Paper, New York University, 2016. Google Scholar |
[14] |
V. Gaur and S. Seshadri,
Hedging inventory risk through market instruments, Manufacturing and Service Operations Management, 7 (2005), 103-120.
doi: 10.1287/msom.1040.0061. |
[15] |
S. Gavirneni,
Periodic review inventory control with fluctuating purchasing costs, Operations Research Letters, 32 (2004), 374-379.
doi: 10.1016/j.orl.2003.11.003. |
[16] |
S. Goyal and B. C. Giri,
Recent trends in modeling of deteriorating inventory, European Journal of Operational Research, 134 (2001), 1-16.
doi: 10.1016/S0377-2217(00)00248-4. |
[17] |
J. Jenkinson, Procurement in action, the efficio grassroots procurement survey 2011, Efficio Consulting, 2011. Google Scholar |
[18] |
D. Kahneman, Attention and Effort, Englewood Cliffs, N7T Prentice-Hall, 1973. Google Scholar |
[19] |
B. A. Kalymon,
Stochastic prices in a single-item inventory purchasing model, Operations Research, 19 (1971), 1434-1458.
doi: 10.1287/opre.19.6.1434. |
[20] |
M. Lashgari, A. A. Taleizadeh and S. S. Sana,
An inventory control problem for deteriorating items with back-ordering and financial considerations under two levels of trade credit linked to order quantity, Journal of Industrial and Management Optimization, 12 (2016), 1091-1119.
|
[21] |
H. Liu, X. Luo, W. Bi, Y. Man and K. L. Teo,
Dynamic pricing of network goods in duopoly markets with boundedly rational consumers, J. Ind. Manag. Optim, 13 (2017), 427-445.
|
[22] |
B. Mackowiak and M Wiederholt,
Information processing and limited liability, The American Economic Review, 102 (2012), 30-34.
doi: 10.1257/aer.102.3.30. |
[23] |
B. Mackowiak and M. Wiederholt, Inattention to Rare Events, 2015. Available at SSRN 2477548: https://ssrn.com/abstract=2650452. Google Scholar |
[24] |
F. Matejka and C. A. Sims, Discrete actions in information -constrained tracking problems, Princeton University Manuscript, (2011).
doi: 10.2139/ssrn.1886640. |
[25] |
S. Nahmias and W. S. Demmy, Operating characteristics of an inventory system with rationing, Management Science, 27 (1981), 1236-1245. Google Scholar |
[26] |
F. Raafat, Survey of literature on continuously deteriorating inventory models, Journal of the Operational Research Society, 42 (1991), 27-37. Google Scholar |
[27] |
R. Reis,
Inattentive consumers, Journal of Monetary Economics, 53 (2006), 1761-1800.
doi: 10.3386/w10883. |
[28] |
J. Schwartzstein,
Selective attention and learning, Journal of the European Economic Association, 12 (2014), 1423-1452.
doi: 10.1111/jeea.12104. |
[29] |
K. Sebastian, A. Maessen and S. Strasmann, Mastering the Uniqueness of Commodity Pricing: How to Guide, Set and Control Prices, Simon-Kucher-Whitepaper, 2010. Google Scholar |
[30] |
N. H. Shah and Y. Shah, Literature survey on inventory models for deteriorating items, Ekonomski Anali, 44 (2000), 221-237. Google Scholar |
[31] |
C. A. Sims,
Implications of rational inattention, Journal of Monetary Economics, 50 (2003), 665-690.
doi: 10.1016/S0304-3932(03)00029-1. |
[32] |
B. Sivakumar,
A perishable inventory system with retrial demands and a finite population, Journal of Computational and Applied Mathematics, 224 (2009), 29-38.
doi: 10.1016/j.cam.2008.03.041. |
[33] |
T. M. Whitin,
Inventory control and price theory, Management Science, 2 (1955), 61-68.
doi: 10.1287/mnsc.2.1.61. |
[34] |
O. Q. Wu and H. Chen,
Optimal control and equilibrium behavior of production-inventory systems, Management Science, 56 (2010), 1362-1379.
doi: 10.1287/mnsc.1100.1186. |
[35] |
J. X. Zhang, Z. Y. Bai and W. S. Tang,
Optimal pricing policy for deteriorating items with preservation technology investment, Journal of Industrial and Management Optimization, 10 (2014), 1261-1277.
doi: 10.3934/jimo.2014.10.1261. |
[36] |
Y.-S. Zheng,
Optimal control policy for stochastic inventory systems with Markovian discount opportunities, Operations Research, 42 (1994), 721-738.
doi: 10.1287/opre.42.4.721. |
[37] |
P. Zipkin,
Critical number policies for inventory models with periodic data, Management Science, 35 (1989), 71-80.
doi: 10.1287/mnsc.35.1.71. |
show all references
References:
[1] |
A. B. Abel, J. C. Eberly and S. Panageas,
Optimal inattention to the stock market with information costs and transactions costs, Econometrica, 81 (2013), 1455-1481.
doi: 10.3982/ECTA7624. |
[2] |
R. Akella, V. F. Araman and J. Kleinknecht, B2B Markets: Procuremen and Supplier Risk Management in E-Business, in Supply chain management: models, applications, and research directions, Springer, (2005), 33-66. Google Scholar |
[3] |
P. Berling and V. Martínez-de-Albéniz,
Optimal inventory policies when purchase price and demand are stochastic, Operations Research, 59 (2011), 109-124.
doi: 10.1287/opre.1100.0862. |
[4] |
P. Berling and K. Rosling,
The effects of financial risks on inventory policy, Management Science, 51 (2002), 1804-1815.
doi: 10.1287/mnsc.1050.0435. |
[5] |
W. Bi, G. Li and M. Liu,
Dynamic pricing with stochastic reference effects based on a finite memory window, International Journal of Production Research, 55 (2017), 3331-3348.
doi: 10.1080/00207543.2016.1221160. |
[6] |
W. Bi, L. Tian, H. LIu and X. Chen, A stochastic dynamic programming approach based on bounded rationality and application to dynamic portfolio choice, Discrete Dynamics in Nature and Society, 2014 (2014), Article ID 840725, 11pages. |
[7] |
A. Bouras and L. Tadj,
Production planning in a three-stock reverse-logistics system with deteriorating items under a continuous review policy, Journal of Industrial and Management Optimization, 11 (2015), 1041-1058.
doi: 10.3934/jimo.2015.11.1041. |
[8] |
J.-M. Chen and C.-S. Lin, An optimal replenishment model for inventory items with normally distributed deterioration, Production Planning and Control, 13 (2002), 470-480. Google Scholar |
[9] |
S. K. Devalkar, R. Anupindi and A. Sinha,
Integrated optimization of procurement, processing, and trade of commodities, Operations Research, 59 (2011), 1369-1381.
doi: 10.1287/opre.1110.0959. |
[10] |
D. Duffie and T. Sun,
Transactions costs and portfolio choice in a discrete-continuous-time setting, Journal of Economic Dynamics and Control, 14 (1990), 35-51.
doi: 10.1016/0165-1889(90)90004-Z. |
[11] |
Q. Fu, C. Y. Lee and C. P. Teo, Procurement management using option contracts: Random spot price and the portfolio effect, IIE Transactions, 42 (2010), 793-811. Google Scholar |
[12] |
X. Gabaix,
A sparsity-based model of bounded rationality, Quarterly Journal of Economics, 129 (2014), 1661-1710.
doi: 10.3386/w16911. |
[13] |
X. Gabaix, Sparse Dynamic Programming and Aggregate Fluctuations, Working Paper, New York University, 2016. Google Scholar |
[14] |
V. Gaur and S. Seshadri,
Hedging inventory risk through market instruments, Manufacturing and Service Operations Management, 7 (2005), 103-120.
doi: 10.1287/msom.1040.0061. |
[15] |
S. Gavirneni,
Periodic review inventory control with fluctuating purchasing costs, Operations Research Letters, 32 (2004), 374-379.
doi: 10.1016/j.orl.2003.11.003. |
[16] |
S. Goyal and B. C. Giri,
Recent trends in modeling of deteriorating inventory, European Journal of Operational Research, 134 (2001), 1-16.
doi: 10.1016/S0377-2217(00)00248-4. |
[17] |
J. Jenkinson, Procurement in action, the efficio grassroots procurement survey 2011, Efficio Consulting, 2011. Google Scholar |
[18] |
D. Kahneman, Attention and Effort, Englewood Cliffs, N7T Prentice-Hall, 1973. Google Scholar |
[19] |
B. A. Kalymon,
Stochastic prices in a single-item inventory purchasing model, Operations Research, 19 (1971), 1434-1458.
doi: 10.1287/opre.19.6.1434. |
[20] |
M. Lashgari, A. A. Taleizadeh and S. S. Sana,
An inventory control problem for deteriorating items with back-ordering and financial considerations under two levels of trade credit linked to order quantity, Journal of Industrial and Management Optimization, 12 (2016), 1091-1119.
|
[21] |
H. Liu, X. Luo, W. Bi, Y. Man and K. L. Teo,
Dynamic pricing of network goods in duopoly markets with boundedly rational consumers, J. Ind. Manag. Optim, 13 (2017), 427-445.
|
[22] |
B. Mackowiak and M Wiederholt,
Information processing and limited liability, The American Economic Review, 102 (2012), 30-34.
doi: 10.1257/aer.102.3.30. |
[23] |
B. Mackowiak and M. Wiederholt, Inattention to Rare Events, 2015. Available at SSRN 2477548: https://ssrn.com/abstract=2650452. Google Scholar |
[24] |
F. Matejka and C. A. Sims, Discrete actions in information -constrained tracking problems, Princeton University Manuscript, (2011).
doi: 10.2139/ssrn.1886640. |
[25] |
S. Nahmias and W. S. Demmy, Operating characteristics of an inventory system with rationing, Management Science, 27 (1981), 1236-1245. Google Scholar |
[26] |
F. Raafat, Survey of literature on continuously deteriorating inventory models, Journal of the Operational Research Society, 42 (1991), 27-37. Google Scholar |
[27] |
R. Reis,
Inattentive consumers, Journal of Monetary Economics, 53 (2006), 1761-1800.
doi: 10.3386/w10883. |
[28] |
J. Schwartzstein,
Selective attention and learning, Journal of the European Economic Association, 12 (2014), 1423-1452.
doi: 10.1111/jeea.12104. |
[29] |
K. Sebastian, A. Maessen and S. Strasmann, Mastering the Uniqueness of Commodity Pricing: How to Guide, Set and Control Prices, Simon-Kucher-Whitepaper, 2010. Google Scholar |
[30] |
N. H. Shah and Y. Shah, Literature survey on inventory models for deteriorating items, Ekonomski Anali, 44 (2000), 221-237. Google Scholar |
[31] |
C. A. Sims,
Implications of rational inattention, Journal of Monetary Economics, 50 (2003), 665-690.
doi: 10.1016/S0304-3932(03)00029-1. |
[32] |
B. Sivakumar,
A perishable inventory system with retrial demands and a finite population, Journal of Computational and Applied Mathematics, 224 (2009), 29-38.
doi: 10.1016/j.cam.2008.03.041. |
[33] |
T. M. Whitin,
Inventory control and price theory, Management Science, 2 (1955), 61-68.
doi: 10.1287/mnsc.2.1.61. |
[34] |
O. Q. Wu and H. Chen,
Optimal control and equilibrium behavior of production-inventory systems, Management Science, 56 (2010), 1362-1379.
doi: 10.1287/mnsc.1100.1186. |
[35] |
J. X. Zhang, Z. Y. Bai and W. S. Tang,
Optimal pricing policy for deteriorating items with preservation technology investment, Journal of Industrial and Management Optimization, 10 (2014), 1261-1277.
doi: 10.3934/jimo.2014.10.1261. |
[36] |
Y.-S. Zheng,
Optimal control policy for stochastic inventory systems with Markovian discount opportunities, Operations Research, 42 (1994), 721-738.
doi: 10.1287/opre.42.4.721. |
[37] |
P. Zipkin,
Critical number policies for inventory models with periodic data, Management Science, 35 (1989), 71-80.
doi: 10.1287/mnsc.35.1.71. |
[1] |
Mohammed Abdelghany, Amr B. Eltawil, Zakaria Yahia, Kazuhide Nakata. A hybrid variable neighbourhood search and dynamic programming approach for the nurse rostering problem. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2051-2072. doi: 10.3934/jimo.2020058 |
[2] |
Chris Guiver, Nathan Poppelreiter, Richard Rebarber, Brigitte Tenhumberg, Stuart Townley. Dynamic observers for unknown populations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3279-3302. doi: 10.3934/dcdsb.2020232 |
[3] |
Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021 |
[4] |
Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109 |
[5] |
Xue Qiao, Zheng Wang, Haoxun Chen. Joint optimal pricing and inventory management policy and its sensitivity analysis for perishable products: Lost sale case. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021079 |
[6] |
Xianchao Xiu, Ying Yang, Wanquan Liu, Lingchen Kong, Meijuan Shang. An improved total variation regularized RPCA for moving object detection with dynamic background. Journal of Industrial & Management Optimization, 2020, 16 (4) : 1685-1698. doi: 10.3934/jimo.2019024 |
[7] |
Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021035 |
[8] |
Shuting Chen, Zengji Du, Jiang Liu, Ke Wang. The dynamic properties of a generalized Kawahara equation with Kuramoto-Sivashinsky perturbation. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021098 |
[9] |
Hui Xu, Guangbin Cai, Xiaogang Yang, Erliang Yao, Xiaofeng Li. Stereo visual odometry based on dynamic and static features division. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021059 |
[10] |
Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023 |
[11] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
[12] |
Wenjuan Zhao, Shunfu Jin, Wuyi Yue. A stochastic model and social optimization of a blockchain system based on a general limited batch service queue. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1845-1861. doi: 10.3934/jimo.2020049 |
[13] |
Shoufeng Ji, Jinhuan Tang, Minghe Sun, Rongjuan Luo. Multi-objective optimization for a combined location-routing-inventory system considering carbon-capped differences. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021051 |
[14] |
Demou Luo, Qiru Wang. Dynamic analysis on an almost periodic predator-prey system with impulsive effects and time delays. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3427-3453. doi: 10.3934/dcdsb.2020238 |
[15] |
Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006 |
[16] |
Yu-Hsien Liao. Solutions and characterizations under multicriteria management systems. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021041 |
[17] |
Philippe G. Lefloch, Cristinel Mardare, Sorin Mardare. Isometric immersions into the Minkowski spacetime for Lorentzian manifolds with limited regularity. Discrete & Continuous Dynamical Systems, 2009, 23 (1&2) : 341-365. doi: 10.3934/dcds.2009.23.341 |
[18] |
Haripriya Barman, Magfura Pervin, Sankar Kumar Roy, Gerhard-Wilhelm Weber. Back-ordered inventory model with inflation in a cloudy-fuzzy environment. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1913-1941. doi: 10.3934/jimo.2020052 |
[19] |
Lei Zhang, Luming Jia. Near-field imaging for an obstacle above rough surfaces with limited aperture data. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021024 |
[20] |
Hideaki Takagi. Extension of Littlewood's rule to the multi-period static revenue management model with standby customers. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2181-2202. doi: 10.3934/jimo.2020064 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]