• Previous Article
    Asymptotics for a bidimensional risk model with two geometric Lévy price processes
  • JIMO Home
  • This Issue
  • Next Article
    Dynamic optimal decision making for manufacturers with limited attention based on sparse dynamic programming
April  2019, 15(2): 465-480. doi: 10.3934/jimo.2018051

Higher-order weak radial epiderivatives and non-convex set-valued optimization problems

a. 

College of Mathematics and Statistics, Chongqing Jiaotong University, Chongqing 400074, China

b. 

College of Mathematics and Statistics, Chongqing University, Chongqing 401331, China

1 Corresponding author.

Received  July 2017 Revised  December 2017 Published  April 2018

Fund Project: This research was partially supported by Chongqing Natural Science Foundation Project of CQ CSTC(Nos. 2015jcyjA30009, 2015jcyjBX0131,2017jcyjAX0382), the Program of Chongqing Innovation Team Project in University (No. CXTDX201601022) and the National Natural Science Foundation of China (No. 11571055).

In the paper, we propose the notion of the higher-order weak radial epiderivative of a set-valued map, and discuss some of its properties. Then, by virtue of the higher-order weak radial epiderivative, we establish the optimality necessary conditions and sufficient ones of weak efficient solutions (Pareto efficient solutions) for non-convex set-valued optimization problems. Some of the obtained results improve and extend the recent existing results. Several examples are provided to show the main results obtained.

Citation: Qilin Wang, Liu He, Shengjie Li. Higher-order weak radial epiderivatives and non-convex set-valued optimization problems. Journal of Industrial & Management Optimization, 2019, 15 (2) : 465-480. doi: 10.3934/jimo.2018051
References:
[1]

N. L. H. Anh, Mixed type duality for set-valued optimization problems via higher-order radial epiderivatives, Numer. Func. Anal. Optim., 37 (2016), 823--838.  doi: 10.1080/01630563.2016.1179202.  Google Scholar

[2]

N. L. H. Anh, Higher-order optimality conditions for strict and weak efficient solutions in set-valued optimization, Positivity, 20 (2016), 499-514.  doi: 10.1007/s11117-015-0369-x.  Google Scholar

[3]

J. P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhauser, Boston, 1990.  Google Scholar

[4]

E. M. Bednarczuk and W. Song, Contingent epiderivative and its applications to set-valued optimization, Control Cybern, 27 (1998), 376-386.   Google Scholar

[5]

J. M. Borwein, On the existence of Pareto efficient points, Math. Oper. Res., 8 (1983), 64-73.  doi: 10.1287/moor.8.1.64.  Google Scholar

[6]

G. Bouligand, Sur l'existence des demi-tangents á une courbe de Jordan, Fundamenta Math., 15 (1930), 215-215.   Google Scholar

[7]

C. Certh and P. Weidner, Nonconvex separation theorems and some applications in vector optimization, J.Optim.Theory Appl., 67 (1990), 297-320.  doi: 10.1007/BF00940478.  Google Scholar

[8]

C. R. ChenS. J. Li and K. L. Teo, Higher order weak epiderivatives and applications to duality and optimality conditions, Comput. Math. Appl., 57 (2009), 1389-1399.  doi: 10.1016/j.camwa.2009.01.012.  Google Scholar

[9]

G. Y. Chen and J. Jahn, Optimality conditions for set-valued optimization problems, Math. Methods Oper. Res., 48 (1998), 187-200.  doi: 10.1007/s001860050021.  Google Scholar

[10]

S. Y. Cho, Strong convergence analysis of a hybrid algorithm for nonlinear operators in a Banach space, J. Appl. Anal. Comput., 8 (2018), 19-31.   Google Scholar

[11]

T. D. Chuong and J. C. Yao, Generalized Clarke epiderivatives of parametric vector optimization problems, J. Optim. Theory Appl., 146 (2010), 77-94.  doi: 10.1007/s10957-010-9646-9.  Google Scholar

[12]

H. W. Corley, Optimality conditions for maximizations of set-valued functions, J. Optim. Theory Appl., 58 (1988), 1-10.  doi: 10.1007/BF00939767.  Google Scholar

[13]

G. P. CrepsiI. Ginchev and M. Rocca, First-order optimality conditions in set-valued optimization, Math. Meth. Oper. Res., 63 (2006), 87-106.  doi: 10.1007/s00186-005-0023-7.  Google Scholar

[14]

M. Durea, First and second order optimality conditions for set-valued optimization problems, Rend. Circ. Mat. Palermo 2, 53 (2004), 451-468.  doi: 10.1007/BF02875738.  Google Scholar

[15]

M. Durea, Optimality conditions for weak and firm efficiency in set-valued optimization, J. Math. Anal. Appl., 344 (2008), 1018-1028.  doi: 10.1016/j.jmaa.2008.03.053.  Google Scholar

[16]

F. Flores-Bazán, Optimality conditions in nonconvex set-valued optimization, Math. Methods Oper. Res., 53 (2001), 403-417.  doi: 10.1007/s001860100130.  Google Scholar

[17]

F. Flores-Bazán, Radial epiderivatives and asymptotic function in nonconvex vector optimization, SIAM J. Optim., 14 (2003), 284-305.  doi: 10.1137/S1052623401392111.  Google Scholar

[18]

J. Jahn, Vector Optimization: Theory, Applications, and Extensions, Springer, Berlin, 2004.  Google Scholar

[19]

J. Jahn and R. Rauh, Contingent epiderivatives and set-valued optimization, Math. Meth. Oper. Res., 46 (1997), 193-211.  doi: 10.1007/BF01217690.  Google Scholar

[20]

J. Jahn and A. A. Khan, Generalized contingent epiderivatives in set-valued optimization: Optimality conditions, Numer. Func. Anal. Optim., 23 (2002), 807-831.  doi: 10.1081/NFA-120016271.  Google Scholar

[21]

R. Kasimbeyli, Radial epiderivatives and set-valued optimization, Optimization, 58 (2009), 521-534.  doi: 10.1080/02331930902928310.  Google Scholar

[22]

C. S. Lalitha and R. Arora, Weak Clarke epiderivative in set-valued optimization, J. Math. Anal. Appl., 342 (2008), 704-714.  doi: 10.1016/j.jmaa.2007.11.057.  Google Scholar

[23]

S. J. Li and C. R. Chen, Higher-order optimality conditions for Henig efficient solutions in set-valued optimization, J. Math. Anal. Appl., 323 (2006), 1184-1200.  doi: 10.1016/j.jmaa.2005.11.035.  Google Scholar

[24]

S. J. LiK. L. Teo and X. Q. Yang, Higher-order Mond-Weir duality for set-valued optimization, J. Comput. Appl. Math., 217 (2008), 339-349.  doi: 10.1016/j.cam.2007.02.011.  Google Scholar

[25]

S. J. LiX. Q. Yang and G. Y. Chen, Nonconvex vector optimization of set-valued mappings, J. Math. Anal. Appl., 283 (2003), 337-350.  doi: 10.1016/S0022-247X(02)00410-9.  Google Scholar

[26]

X. J. LongJ. W. Peng and M. M. Wong, Generalized radial epiderivatives and nonconvex set-valued optimization problems, Applicable Analysis, 91 (2012), 1891-1900.  doi: 10.1080/00036811.2012.682057.  Google Scholar

[27]

D. T. Luc, Theory of Vector Optimization, Springer, Berlin, 1989. doi: 10.1007/978-3-642-50280-4.  Google Scholar

[28]

D. T. Luc, Contingent derivatives of set-valued maps and applications to vector optimization, Math. Prog., 50 (1991), 99-111.  doi: 10.1007/BF01594928.  Google Scholar

[29]

B. S. Mordukhovich, Variational Analysis and Generalized Differentiation, Vol. I Basic Theory, Springer, Berlin, 2006.  Google Scholar

[30]

B. S. Mordukhovich, Variational Analysis and Generalized Differentiation, Vol. II Applications, Springer, Berlin, 2006.  Google Scholar

[31]

X. L. Qin and J. C. Yao, Projection splitting algorithms for nonself operators, J. Nonlinear Convex Anal., 18 (2017), 925-935.   Google Scholar

[32]

B. Soleimani and C. Tammer, A vector-valued Ekelands variational principle in vector optimization with variable ordering structures, J. Nonlinear Var. Anal., 1 (2017), 89-110.   Google Scholar

[33]

X. K. Sun and S. J. Li, Generalized second-order contingent epiderivatives in parametric vector optimization problems, J. Optim. Theory Appl., 58 (2014), 351-363.  doi: 10.1007/s10898-013-0054-1.  Google Scholar

[34]

A. Taa, Set-valued derivatives of multifunctions and optimality conditions, Numer. Funct. Anal. Optim., 19 (1998), 121-140.  doi: 10.1080/01630569808816819.  Google Scholar

[35]

L. T. Tung, Strong Karush-Kuhn-Tucker optimality conditions and duality for nonsmooth multiobjective semi-infinite programming via Michel-Penot subdifferential, J. Nonlinear Funct. Anal., 2017 (2017), Article ID 49. Google Scholar

[36]

Q. L. Wang and S. J. Li, Generalized higher-order optimality conditions for set-valued optimization under Henig efficiency, Numer. Func. Anal. Optim., 30 (2009), 849-869.  doi: 10.1080/01630560903139540.  Google Scholar

show all references

References:
[1]

N. L. H. Anh, Mixed type duality for set-valued optimization problems via higher-order radial epiderivatives, Numer. Func. Anal. Optim., 37 (2016), 823--838.  doi: 10.1080/01630563.2016.1179202.  Google Scholar

[2]

N. L. H. Anh, Higher-order optimality conditions for strict and weak efficient solutions in set-valued optimization, Positivity, 20 (2016), 499-514.  doi: 10.1007/s11117-015-0369-x.  Google Scholar

[3]

J. P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhauser, Boston, 1990.  Google Scholar

[4]

E. M. Bednarczuk and W. Song, Contingent epiderivative and its applications to set-valued optimization, Control Cybern, 27 (1998), 376-386.   Google Scholar

[5]

J. M. Borwein, On the existence of Pareto efficient points, Math. Oper. Res., 8 (1983), 64-73.  doi: 10.1287/moor.8.1.64.  Google Scholar

[6]

G. Bouligand, Sur l'existence des demi-tangents á une courbe de Jordan, Fundamenta Math., 15 (1930), 215-215.   Google Scholar

[7]

C. Certh and P. Weidner, Nonconvex separation theorems and some applications in vector optimization, J.Optim.Theory Appl., 67 (1990), 297-320.  doi: 10.1007/BF00940478.  Google Scholar

[8]

C. R. ChenS. J. Li and K. L. Teo, Higher order weak epiderivatives and applications to duality and optimality conditions, Comput. Math. Appl., 57 (2009), 1389-1399.  doi: 10.1016/j.camwa.2009.01.012.  Google Scholar

[9]

G. Y. Chen and J. Jahn, Optimality conditions for set-valued optimization problems, Math. Methods Oper. Res., 48 (1998), 187-200.  doi: 10.1007/s001860050021.  Google Scholar

[10]

S. Y. Cho, Strong convergence analysis of a hybrid algorithm for nonlinear operators in a Banach space, J. Appl. Anal. Comput., 8 (2018), 19-31.   Google Scholar

[11]

T. D. Chuong and J. C. Yao, Generalized Clarke epiderivatives of parametric vector optimization problems, J. Optim. Theory Appl., 146 (2010), 77-94.  doi: 10.1007/s10957-010-9646-9.  Google Scholar

[12]

H. W. Corley, Optimality conditions for maximizations of set-valued functions, J. Optim. Theory Appl., 58 (1988), 1-10.  doi: 10.1007/BF00939767.  Google Scholar

[13]

G. P. CrepsiI. Ginchev and M. Rocca, First-order optimality conditions in set-valued optimization, Math. Meth. Oper. Res., 63 (2006), 87-106.  doi: 10.1007/s00186-005-0023-7.  Google Scholar

[14]

M. Durea, First and second order optimality conditions for set-valued optimization problems, Rend. Circ. Mat. Palermo 2, 53 (2004), 451-468.  doi: 10.1007/BF02875738.  Google Scholar

[15]

M. Durea, Optimality conditions for weak and firm efficiency in set-valued optimization, J. Math. Anal. Appl., 344 (2008), 1018-1028.  doi: 10.1016/j.jmaa.2008.03.053.  Google Scholar

[16]

F. Flores-Bazán, Optimality conditions in nonconvex set-valued optimization, Math. Methods Oper. Res., 53 (2001), 403-417.  doi: 10.1007/s001860100130.  Google Scholar

[17]

F. Flores-Bazán, Radial epiderivatives and asymptotic function in nonconvex vector optimization, SIAM J. Optim., 14 (2003), 284-305.  doi: 10.1137/S1052623401392111.  Google Scholar

[18]

J. Jahn, Vector Optimization: Theory, Applications, and Extensions, Springer, Berlin, 2004.  Google Scholar

[19]

J. Jahn and R. Rauh, Contingent epiderivatives and set-valued optimization, Math. Meth. Oper. Res., 46 (1997), 193-211.  doi: 10.1007/BF01217690.  Google Scholar

[20]

J. Jahn and A. A. Khan, Generalized contingent epiderivatives in set-valued optimization: Optimality conditions, Numer. Func. Anal. Optim., 23 (2002), 807-831.  doi: 10.1081/NFA-120016271.  Google Scholar

[21]

R. Kasimbeyli, Radial epiderivatives and set-valued optimization, Optimization, 58 (2009), 521-534.  doi: 10.1080/02331930902928310.  Google Scholar

[22]

C. S. Lalitha and R. Arora, Weak Clarke epiderivative in set-valued optimization, J. Math. Anal. Appl., 342 (2008), 704-714.  doi: 10.1016/j.jmaa.2007.11.057.  Google Scholar

[23]

S. J. Li and C. R. Chen, Higher-order optimality conditions for Henig efficient solutions in set-valued optimization, J. Math. Anal. Appl., 323 (2006), 1184-1200.  doi: 10.1016/j.jmaa.2005.11.035.  Google Scholar

[24]

S. J. LiK. L. Teo and X. Q. Yang, Higher-order Mond-Weir duality for set-valued optimization, J. Comput. Appl. Math., 217 (2008), 339-349.  doi: 10.1016/j.cam.2007.02.011.  Google Scholar

[25]

S. J. LiX. Q. Yang and G. Y. Chen, Nonconvex vector optimization of set-valued mappings, J. Math. Anal. Appl., 283 (2003), 337-350.  doi: 10.1016/S0022-247X(02)00410-9.  Google Scholar

[26]

X. J. LongJ. W. Peng and M. M. Wong, Generalized radial epiderivatives and nonconvex set-valued optimization problems, Applicable Analysis, 91 (2012), 1891-1900.  doi: 10.1080/00036811.2012.682057.  Google Scholar

[27]

D. T. Luc, Theory of Vector Optimization, Springer, Berlin, 1989. doi: 10.1007/978-3-642-50280-4.  Google Scholar

[28]

D. T. Luc, Contingent derivatives of set-valued maps and applications to vector optimization, Math. Prog., 50 (1991), 99-111.  doi: 10.1007/BF01594928.  Google Scholar

[29]

B. S. Mordukhovich, Variational Analysis and Generalized Differentiation, Vol. I Basic Theory, Springer, Berlin, 2006.  Google Scholar

[30]

B. S. Mordukhovich, Variational Analysis and Generalized Differentiation, Vol. II Applications, Springer, Berlin, 2006.  Google Scholar

[31]

X. L. Qin and J. C. Yao, Projection splitting algorithms for nonself operators, J. Nonlinear Convex Anal., 18 (2017), 925-935.   Google Scholar

[32]

B. Soleimani and C. Tammer, A vector-valued Ekelands variational principle in vector optimization with variable ordering structures, J. Nonlinear Var. Anal., 1 (2017), 89-110.   Google Scholar

[33]

X. K. Sun and S. J. Li, Generalized second-order contingent epiderivatives in parametric vector optimization problems, J. Optim. Theory Appl., 58 (2014), 351-363.  doi: 10.1007/s10898-013-0054-1.  Google Scholar

[34]

A. Taa, Set-valued derivatives of multifunctions and optimality conditions, Numer. Funct. Anal. Optim., 19 (1998), 121-140.  doi: 10.1080/01630569808816819.  Google Scholar

[35]

L. T. Tung, Strong Karush-Kuhn-Tucker optimality conditions and duality for nonsmooth multiobjective semi-infinite programming via Michel-Penot subdifferential, J. Nonlinear Funct. Anal., 2017 (2017), Article ID 49. Google Scholar

[36]

Q. L. Wang and S. J. Li, Generalized higher-order optimality conditions for set-valued optimization under Henig efficiency, Numer. Func. Anal. Optim., 30 (2009), 849-869.  doi: 10.1080/01630560903139540.  Google Scholar

[1]

Pavel I. Naumkin, Isahi Sánchez-Suárez. Asymptotics for the higher-order derivative nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021028

[2]

Shoichi Hasegawa, Norihisa Ikoma, Tatsuki Kawakami. On weak solutions to a fractional Hardy–Hénon equation: Part I: Nonexistence. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021033

[3]

Kaifang Liu, Lunji Song, Shan Zhao. A new over-penalized weak galerkin method. Part Ⅰ: Second-order elliptic problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2411-2428. doi: 10.3934/dcdsb.2020184

[4]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, 2021, 15 (3) : 387-413. doi: 10.3934/ipi.2020073

[5]

Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017

[6]

Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533

[7]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[8]

Guodong Wang, Bijun Zuo. Energy equality for weak solutions to the 3D magnetohydrodynamic equations in a bounded domain. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021078

[9]

Qiao Liu. Partial regularity and the Minkowski dimension of singular points for suitable weak solutions to the 3D simplified Ericksen–Leslie system. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021041

[10]

Yongqiang Fu, Xiaoju Zhang. Global existence and asymptotic behavior of weak solutions for time-space fractional Kirchhoff-type diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021091

[11]

Miroslav Bulíček, Victoria Patel, Endre Süli, Yasemin Şengül. Existence of large-data global weak solutions to a model of a strain-limiting viscoelastic body. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021053

[12]

Prasanta Kumar Barik, Ankik Kumar Giri, Rajesh Kumar. Mass-conserving weak solutions to the coagulation and collisional breakage equation with singular rates. Kinetic & Related Models, 2021, 14 (2) : 389-406. doi: 10.3934/krm.2021009

[13]

Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810

[14]

A. Aghajani, S. F. Mottaghi. Regularity of extremal solutions of semilinaer fourth-order elliptic problems with general nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (3) : 887-898. doi: 10.3934/cpaa.2018044

[15]

Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024

[16]

Lunji Song, Wenya Qi, Kaifang Liu, Qingxian Gu. A new over-penalized weak galerkin finite element method. Part Ⅱ: Elliptic interface problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2581-2598. doi: 10.3934/dcdsb.2020196

[17]

Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185

[18]

Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597

[19]

Alfonso Castro, Jorge Cossio, Sigifredo Herrón, Carlos Vélez. Infinitely many radial solutions for a $ p $-Laplacian problem with indefinite weight. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021058

[20]

Lipeng Duan, Jun Yang. On the non-degeneracy of radial vortex solutions for a coupled Ginzburg-Landau system. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021056

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (220)
  • HTML views (1401)
  • Cited by (0)

Other articles
by authors

[Back to Top]