-
Previous Article
Exclusion sets in the Δ-type eigenvalue inclusion set for tensors
- JIMO Home
- This Issue
-
Next Article
Higher-order weak radial epiderivatives and non-convex set-valued optimization problems
Asymptotics for a bidimensional risk model with two geometric Lévy price processes
1. | Department of Statistics, Nanjing Audit University, Nanjing 211815, China |
2. | School of Mathematics and Physics, Suzhou University of Science and Technology, Suzhou 215009, China |
3. | Department of Mathematical Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China |
4. | College of Mathematics and Statistics, Chongqing University, Chongqing 401331, China |
Consider a bidimensional risk model with two geometric Lévy price processes and dependent heavy-tailed claims, in which we allow arbitrary dependence structures between the two claim-number processes generated by two kinds of businesses, and between the two geometric Lévy price processes. Under the assumption that the claims have consistently varying tails, the asymptotics for the infinite-time and finite-time ruin probabilities are derived.
References:
[1] |
N. H. Bingham, C. M. Goldie and J. L. Teugels, Regular Variation, Cambridge University Press, Cambridge, 1987. Google Scholar |
[2] |
H. W. Block, T. H. Savits and M. Shaked,
Some concepts of negative dependence, Ann. Probab., 10 (1982), 765-772.
doi: 10.1214/aop/1176993784. |
[3] |
Y. Chen and K. W. Ng,
The ruin probability of the renewal model with constant interest force and negatively dependent heavy-tailed claims, Insurance Math. Econom., 40 (2007), 415-423.
doi: 10.1016/j.insmatheco.2006.06.004. |
[4] |
Y. Chen, L. Wang and Y. Wang,
Uniform asymptotics for the finite-time ruin probabilities of two kinds of nonstandard bidimensional risk models, J. Math. Anal. Appl., 401 (2013), 114-129.
doi: 10.1016/j.jmaa.2012.11.046. |
[5] |
Y. Chen, K. C. Yuen and K. W. Ng,
Asymptotics for ruin probabilities of a two-dimensional renewal risk model with heavy-tailed claims, Appl. Stochastic Models Bus. Ind., 27 (2011), 290-300.
doi: 10.1002/asmb.834. |
[6] |
R. Cont and P. Tankov, Financial Modelling with Jump Processes, Chapman & Hall/CRC, Boca Raton, FL, 2004. |
[7] |
H. Hult, F. Lindskog, T. Mikosch and G. Samorodnitsky,
Functional large deviations for multivariate regularly varying random walks, Ann. Appl. Probab., 15 (2005), 2651-2680.
doi: 10.1214/105051605000000502. |
[8] |
T. Jiang, Y. Wang, Y. Chen and H. Xu,
Uniform asymptotic estimate for finite-time ruin probabilities of a time-dependent bidimensional renewal model, Insurance Math. Econom., 64 (2015), 45-53.
doi: 10.1016/j.insmatheco.2015.04.006. |
[9] |
K. Joag-Dev and F. Proschan,
Negative association of random variables with application, Ann. Statist., 11 (1983), 286-295.
doi: 10.1214/aos/1176346079. |
[10] |
V. Kalashnikov and R. Norberg,
Power tailed ruin probabilities in the presence of risky investments, Stochastic Process. Appl, 98 (2002), 211-228.
doi: 10.1016/S0304-4149(01)00148-X. |
[11] |
E. L. Lehmann,
Some concepts of dependence, Ann. Math. Statist., 37 (1966), 1137-1153.
doi: 10.1214/aoms/1177699260. |
[12] |
J. Li,
Asymptotics in a time-dependent renewal risk model with stochastic return, J. Math. Anal. Appl., 387 (2012), 1009-1023.
doi: 10.1016/j.jmaa.2011.10.012. |
[13] |
J. Li, Z. Liu and Q. Tang,
On the ruin probabilities of a bidimensional perturbed risk model, Insurance Math. Econom., 41 (2007), 185-195.
doi: 10.1016/j.insmatheco.2006.10.012. |
[14] |
J. Li and H. Yang,
Asymptotic ruin probabilities for a bidimensional renewal risk model with constant interest rate and dependent claims, J. Math. Anal. Appl., 426 (2015), 247-266.
doi: 10.1016/j.jmaa.2015.01.047. |
[15] |
X. Liu, Q. Gao and Y. Wang,
A note on a dependent risk model with constant interest rate, Statist. Probab. Lett., 82 (2012), 707-712.
doi: 10.1016/j.spl.2011.12.016. |
[16] |
K. Maulik and S. Resnick,
Characterizations and examples of hidden regular variation, Extremes, 7 (2004), 31-67.
doi: 10.1007/s10687-004-4728-4. |
[17] |
J. Paulsen,
Risk theory in a stochastic economic environmen, Stochastic Process. Appl., 46 (1993), 327-361.
doi: 10.1016/0304-4149(93)90010-2. |
[18] |
J. Paulsen,
On Cramér-like asymptotics for risk processes with stochastic return on investments, Ann. Appl. Probab., 12 (2002), 1247-1260.
doi: 10.1214/aoap/1037125862. |
[19] |
J. Paulsen and H. K. Gjessing,
Ruin theory with stochastic return on investments, Adv. Appl. Probab., 29 (1997), 965-985.
doi: 10.2307/1427849. |
[20] |
Q. Tang, G. Wang and K. C. Yuen,
Uniform tail asymptotics for the stochastic present value of aggregate claims in the renewal risk model, Insurance Math. Econom., 46 (2010), 362-370.
doi: 10.1016/j.insmatheco.2009.12.002. |
[21] |
G. Wang and R. Wu,
Distributions for the risk process with a stochastic return on investments, Stochastic Process. Appl., 95 (2001), 329-341.
doi: 10.1016/S0304-4149(01)00102-8. |
[22] |
H. Yang and J. Li,
Asymptotic finite-time ruin probability for a bidimensional renewal risk model with constant interest force and dependent subexponential claims, Insurance Math. Econom., 58 (2014), 185-192.
doi: 10.1016/j.insmatheco.2014.07.007. |
[23] |
H. Yang and J. Li,
Asymptotic ruin probabilities for a bidimensional renewal risk model, Stochastics, 89 (2017), 687-708.
doi: 10.1080/17442508.2016.1276909. |
[24] |
Y. Yang, K. Wang and D. G. Konstantinides,
Uniform asymptotics for discounted aggregate claims in dependent risk models, J. Appl. Probab., 51 (2014), 669-684.
doi: 10.1239/jap/1409932666. |
[25] |
Y. Yang and K. C. Yuen,
Finite-time and infinite-time ruin probabilities in a two-dimensional delayed renewal risk model with Sarmanov dependent claims, J. Math. Anal. Appl., 442 (2016), 600-626.
doi: 10.1016/j.jmaa.2016.04.068. |
[26] |
K. C. Yuen, J. Guo and X. Wu,
On the first time of ruin in the bivariate compound Poisson model, Insurance Math. Econom., 38 (2006), 298-308.
doi: 10.1016/j.insmatheco.2005.08.011. |
show all references
References:
[1] |
N. H. Bingham, C. M. Goldie and J. L. Teugels, Regular Variation, Cambridge University Press, Cambridge, 1987. Google Scholar |
[2] |
H. W. Block, T. H. Savits and M. Shaked,
Some concepts of negative dependence, Ann. Probab., 10 (1982), 765-772.
doi: 10.1214/aop/1176993784. |
[3] |
Y. Chen and K. W. Ng,
The ruin probability of the renewal model with constant interest force and negatively dependent heavy-tailed claims, Insurance Math. Econom., 40 (2007), 415-423.
doi: 10.1016/j.insmatheco.2006.06.004. |
[4] |
Y. Chen, L. Wang and Y. Wang,
Uniform asymptotics for the finite-time ruin probabilities of two kinds of nonstandard bidimensional risk models, J. Math. Anal. Appl., 401 (2013), 114-129.
doi: 10.1016/j.jmaa.2012.11.046. |
[5] |
Y. Chen, K. C. Yuen and K. W. Ng,
Asymptotics for ruin probabilities of a two-dimensional renewal risk model with heavy-tailed claims, Appl. Stochastic Models Bus. Ind., 27 (2011), 290-300.
doi: 10.1002/asmb.834. |
[6] |
R. Cont and P. Tankov, Financial Modelling with Jump Processes, Chapman & Hall/CRC, Boca Raton, FL, 2004. |
[7] |
H. Hult, F. Lindskog, T. Mikosch and G. Samorodnitsky,
Functional large deviations for multivariate regularly varying random walks, Ann. Appl. Probab., 15 (2005), 2651-2680.
doi: 10.1214/105051605000000502. |
[8] |
T. Jiang, Y. Wang, Y. Chen and H. Xu,
Uniform asymptotic estimate for finite-time ruin probabilities of a time-dependent bidimensional renewal model, Insurance Math. Econom., 64 (2015), 45-53.
doi: 10.1016/j.insmatheco.2015.04.006. |
[9] |
K. Joag-Dev and F. Proschan,
Negative association of random variables with application, Ann. Statist., 11 (1983), 286-295.
doi: 10.1214/aos/1176346079. |
[10] |
V. Kalashnikov and R. Norberg,
Power tailed ruin probabilities in the presence of risky investments, Stochastic Process. Appl, 98 (2002), 211-228.
doi: 10.1016/S0304-4149(01)00148-X. |
[11] |
E. L. Lehmann,
Some concepts of dependence, Ann. Math. Statist., 37 (1966), 1137-1153.
doi: 10.1214/aoms/1177699260. |
[12] |
J. Li,
Asymptotics in a time-dependent renewal risk model with stochastic return, J. Math. Anal. Appl., 387 (2012), 1009-1023.
doi: 10.1016/j.jmaa.2011.10.012. |
[13] |
J. Li, Z. Liu and Q. Tang,
On the ruin probabilities of a bidimensional perturbed risk model, Insurance Math. Econom., 41 (2007), 185-195.
doi: 10.1016/j.insmatheco.2006.10.012. |
[14] |
J. Li and H. Yang,
Asymptotic ruin probabilities for a bidimensional renewal risk model with constant interest rate and dependent claims, J. Math. Anal. Appl., 426 (2015), 247-266.
doi: 10.1016/j.jmaa.2015.01.047. |
[15] |
X. Liu, Q. Gao and Y. Wang,
A note on a dependent risk model with constant interest rate, Statist. Probab. Lett., 82 (2012), 707-712.
doi: 10.1016/j.spl.2011.12.016. |
[16] |
K. Maulik and S. Resnick,
Characterizations and examples of hidden regular variation, Extremes, 7 (2004), 31-67.
doi: 10.1007/s10687-004-4728-4. |
[17] |
J. Paulsen,
Risk theory in a stochastic economic environmen, Stochastic Process. Appl., 46 (1993), 327-361.
doi: 10.1016/0304-4149(93)90010-2. |
[18] |
J. Paulsen,
On Cramér-like asymptotics for risk processes with stochastic return on investments, Ann. Appl. Probab., 12 (2002), 1247-1260.
doi: 10.1214/aoap/1037125862. |
[19] |
J. Paulsen and H. K. Gjessing,
Ruin theory with stochastic return on investments, Adv. Appl. Probab., 29 (1997), 965-985.
doi: 10.2307/1427849. |
[20] |
Q. Tang, G. Wang and K. C. Yuen,
Uniform tail asymptotics for the stochastic present value of aggregate claims in the renewal risk model, Insurance Math. Econom., 46 (2010), 362-370.
doi: 10.1016/j.insmatheco.2009.12.002. |
[21] |
G. Wang and R. Wu,
Distributions for the risk process with a stochastic return on investments, Stochastic Process. Appl., 95 (2001), 329-341.
doi: 10.1016/S0304-4149(01)00102-8. |
[22] |
H. Yang and J. Li,
Asymptotic finite-time ruin probability for a bidimensional renewal risk model with constant interest force and dependent subexponential claims, Insurance Math. Econom., 58 (2014), 185-192.
doi: 10.1016/j.insmatheco.2014.07.007. |
[23] |
H. Yang and J. Li,
Asymptotic ruin probabilities for a bidimensional renewal risk model, Stochastics, 89 (2017), 687-708.
doi: 10.1080/17442508.2016.1276909. |
[24] |
Y. Yang, K. Wang and D. G. Konstantinides,
Uniform asymptotics for discounted aggregate claims in dependent risk models, J. Appl. Probab., 51 (2014), 669-684.
doi: 10.1239/jap/1409932666. |
[25] |
Y. Yang and K. C. Yuen,
Finite-time and infinite-time ruin probabilities in a two-dimensional delayed renewal risk model with Sarmanov dependent claims, J. Math. Anal. Appl., 442 (2016), 600-626.
doi: 10.1016/j.jmaa.2016.04.068. |
[26] |
K. C. Yuen, J. Guo and X. Wu,
On the first time of ruin in the bivariate compound Poisson model, Insurance Math. Econom., 38 (2006), 298-308.
doi: 10.1016/j.insmatheco.2005.08.011. |
[1] |
Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133 |
[2] |
Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216 |
[3] |
Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017 |
[4] |
Rong Wang, Yihong Du. Long-time dynamics of a diffusive epidemic model with free boundaries. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020360 |
[5] |
Mokhtari Yacine. Boundary controllability and boundary time-varying feedback stabilization of the 1D wave equation in non-cylindrical domains. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021004 |
[6] |
Wenyuan Wang, Ran Xu. General drawdown based dividend control with fixed transaction costs for spectrally negative Lévy risk processes. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020179 |
[7] |
Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137 |
[8] |
Jiangtao Yang. Permanence, extinction and periodic solution of a stochastic single-species model with Lévy noises. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020371 |
[9] |
Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020336 |
[10] |
Simone Göttlich, Elisa Iacomini, Thomas Jung. Properties of the LWR model with time delay. Networks & Heterogeneous Media, 2020 doi: 10.3934/nhm.2020032 |
[11] |
Editorial Office. Retraction: Xiao-Qian Jiang and Lun-Chuan Zhang, Stock price fluctuation prediction method based on time series analysis. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 915-915. doi: 10.3934/dcdss.2019061 |
[12] |
Haixiang Yao, Ping Chen, Miao Zhang, Xun Li. Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020166 |
[13] |
Raffaele Folino, Ramón G. Plaza, Marta Strani. Long time dynamics of solutions to $ p $-Laplacian diffusion problems with bistable reaction terms. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020403 |
[14] |
Jean-Claude Saut, Yuexun Wang. Long time behavior of the fractional Korteweg-de Vries equation with cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1133-1155. doi: 10.3934/dcds.2020312 |
[15] |
Jian Zhang, Tony T. Lee, Tong Ye, Liang Huang. An approximate mean queue length formula for queueing systems with varying service rate. Journal of Industrial & Management Optimization, 2021, 17 (1) : 185-204. doi: 10.3934/jimo.2019106 |
[16] |
Lin Shi, Dingshi Li, Kening Lu. Limiting behavior of unstable manifolds for spdes in varying phase spaces. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021020 |
[17] |
Linglong Du, Min Yang. Pointwise long time behavior for the mixed damped nonlinear wave equation in $ \mathbb{R}^n_+ $. Networks & Heterogeneous Media, 2020 doi: 10.3934/nhm.2020033 |
[18] |
Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020339 |
[19] |
Ming Chen, Hao Wang. Dynamics of a discrete-time stoichiometric optimal foraging model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 107-120. doi: 10.3934/dcdsb.2020264 |
[20] |
Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]