\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Exclusion sets in the Δ-type eigenvalue inclusion set for tensors

  • * Corresponding author: Yaotang Li

    * Corresponding author: Yaotang Li 
The first author is supported by National Natural Science Foundations of China (11361074).
Abstract Full Text(HTML) Figure(3) Related Papers Cited by
  • By excluding some sets which don't include any eigenvalue of a given tensor from the Δ-type eigenvalue inclusion set, two new Δ-type eigenvalue inclusion sets of tensors are given. And two criteria for identifying nonsingular tensors are also provided by using the new Δ-type eigenvalue inclusion sets.

    Mathematics Subject Classification: Primary: 15A18, 15A69.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  $C(\mathcal{A}_{0})\nsubseteqq V(\mathcal{A}_{0})$ and $C(\mathcal{A}_{0})\nsupseteqq V(\mathcal{A}_{0})$.

    Figure 2.  $C(\mathcal{A}_{1})\subset \Theta(\mathcal{A}_{1})$.

    Figure 3.  $V(\mathcal{A}_{2})\subset \Theta(\mathcal{A}_{2})$.

  • [1] C. BuY. WeiL. Sun and J. Zhou, Brualdi-type eigenvalue inclusion sets of tensors, Linear Algebra and its Applications, 480 (2015), 168-175.  doi: 10.1016/j.laa.2015.04.034.
    [2] C. J. Hillar and L. -H. Lim, Most tensor problems are NP-hard, Journal of the ACM (JACM), 60 (2013), Art. 45, 39 pp.
    [3] S. HuZ. HuangC. Ling and L. Qi, On determinants and eigenvalue theory of tensors, Journal of Symbolic Computation, 50 (2013), 508-531.  doi: 10.1016/j.jsc.2012.10.001.
    [4] Z. Huang, L. Wang, Z. Xu and J. Cui, A new S-type eigenvalue inclusion set for tensors and its applications, Journal of Inequalities and Applications, 2016 (2016), Paper No. 254, 19 pp.
    [5] C. LiY. Li and X. Kong, New eigenvalue inclusion sets for tensors, Numerical Linear Algebra with Applications, 21 (2014), 39-50.  doi: 10.1002/nla.1858.
    [6] C. Li and Y. Li, An eigenvalue localization set for tensors with applications to determine the positive (semi-) definiteness of tensors, Linear and Multilinear Algebra, 64 (2016), 587-601.  doi: 10.1080/03081087.2015.1049582.
    [7] C. LiZ. Chen and Y. Li, A new eigenvalue inclusion set for tensors and its applications, Linear Algebra and its Applications, 481 (2015), 36-53.  doi: 10.1016/j.laa.2015.04.023.
    [8] C. LiA. Jiao and Y. Li, An S-type eigenvalue localization set for tensors, Linear Algebra and its Applications, 493 (2016), 469-483.  doi: 10.1016/j.laa.2015.12.018.
    [9] C. LiJ. Zhou and Y. Li, A new Brauer-type eigenvalue localization set for tensors, Linear and Multilinear Algebra, 64 (2016), 727-736.  doi: 10.1080/03081087.2015.1119779.
    [10] L. -H. Lim, Singular values and eigenvalues of tensors: A variational approach, in CAMSAP'05: Proceeding of the IEEE International Workshop on Computational Advances in MultiSensor Adaptive Processing, 2005,129–132.
    [11] L. Qi, Eigenvalues of a real supersymmetric tensor, Journal of Symbolic Computation, 40 (2005), 1302-1324.  doi: 10.1016/j.jsc.2005.05.007.
    [12] L. Qi, Eigenvalues of a Supersymmetric Tensor and Positive Definiteness of an Even Degree Multivariate Form, Department of Applied Mathematics, The Hong Kong Polytechnic University, 2004.
    [13] C. Sang and J. Zhao, A new eigenvalue inclusion set for tensors with its applications, Cogent Mathematics, 4 (2017), 1320831. doi: 10.1080/23311835.2017.1320831.
    [14] X. Wang and Y. Wei, H-tensors and nonsingular H-tensors, Frontiers of Mathematics in China, 11 (2016), 557-575.  doi: 10.1007/s11464-015-0495-6.
    [15] Y. Yang and Q. Yang, Further results for Perron-Frobenius theorem for nonnegative tensors, SIAM Journal on Matrix Analysis and Applications, 31 (2010), 2517-2530.  doi: 10.1137/090778766.
    [16] Q. Yang and Y. Yang, Further results for Perron-Frobenius theorem for nonnegative tensors Ⅱ, SIAM Journal on Matrix Analysis and Applications, 32 (2011), 1236-1250.  doi: 10.1137/100813671.
  • 加载中

Figures(3)

SHARE

Article Metrics

HTML views(1455) PDF downloads(328) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return