
-
Previous Article
Optimal threshold strategies with capital injections in a spectrally negative Lévy risk model
- JIMO Home
- This Issue
-
Next Article
Asymptotics for a bidimensional risk model with two geometric Lévy price processes
Exclusion sets in the Δ-type eigenvalue inclusion set for tensors
School of Mathematics and Statistics, Yunnan University, Kunming 650091, China |
By excluding some sets which don't include any eigenvalue of a given tensor from the Δ-type eigenvalue inclusion set, two new Δ-type eigenvalue inclusion sets of tensors are given. And two criteria for identifying nonsingular tensors are also provided by using the new Δ-type eigenvalue inclusion sets.
References:
[1] |
C. Bu, Y. Wei, L. Sun and J. Zhou,
Brualdi-type eigenvalue inclusion sets of tensors, Linear Algebra and its Applications, 480 (2015), 168-175.
doi: 10.1016/j.laa.2015.04.034. |
[2] |
C. J. Hillar and L. -H. Lim, Most tensor problems are NP-hard, Journal of the ACM (JACM), 60 (2013), Art. 45, 39 pp. |
[3] |
S. Hu, Z. Huang, C. Ling and L. Qi,
On determinants and eigenvalue theory of tensors, Journal of Symbolic Computation, 50 (2013), 508-531.
doi: 10.1016/j.jsc.2012.10.001. |
[4] |
Z. Huang, L. Wang, Z. Xu and J. Cui, A new S-type eigenvalue inclusion set for tensors and its applications, Journal of Inequalities and Applications, 2016 (2016), Paper No. 254, 19 pp. |
[5] |
C. Li, Y. Li and X. Kong,
New eigenvalue inclusion sets for tensors, Numerical Linear Algebra with Applications, 21 (2014), 39-50.
doi: 10.1002/nla.1858. |
[6] |
C. Li and Y. Li,
An eigenvalue localization set for tensors with applications to determine the positive (semi-) definiteness of tensors, Linear and Multilinear Algebra, 64 (2016), 587-601.
doi: 10.1080/03081087.2015.1049582. |
[7] |
C. Li, Z. Chen and Y. Li,
A new eigenvalue inclusion set for tensors and its applications, Linear Algebra and its Applications, 481 (2015), 36-53.
doi: 10.1016/j.laa.2015.04.023. |
[8] |
C. Li, A. Jiao and Y. Li,
An S-type eigenvalue localization set for tensors, Linear Algebra and its Applications, 493 (2016), 469-483.
doi: 10.1016/j.laa.2015.12.018. |
[9] |
C. Li, J. Zhou and Y. Li,
A new Brauer-type eigenvalue localization set for tensors, Linear and Multilinear Algebra, 64 (2016), 727-736.
doi: 10.1080/03081087.2015.1119779. |
[10] |
L. -H. Lim, Singular values and eigenvalues of tensors: A variational approach, in CAMSAP'05: Proceeding of the IEEE International Workshop on Computational Advances in MultiSensor Adaptive Processing, 2005,129–132. Google Scholar |
[11] |
L. Qi,
Eigenvalues of a real supersymmetric tensor, Journal of Symbolic Computation, 40 (2005), 1302-1324.
doi: 10.1016/j.jsc.2005.05.007. |
[12] |
L. Qi, Eigenvalues of a Supersymmetric Tensor and Positive Definiteness of an Even Degree Multivariate Form, Department of Applied Mathematics, The Hong Kong Polytechnic University, 2004. Google Scholar |
[13] |
C. Sang and J. Zhao, A new eigenvalue inclusion set for tensors with its applications, Cogent Mathematics, 4 (2017), 1320831.
doi: 10.1080/23311835.2017.1320831. |
[14] |
X. Wang and Y. Wei,
H-tensors and nonsingular H-tensors, Frontiers of Mathematics in China, 11 (2016), 557-575.
doi: 10.1007/s11464-015-0495-6. |
[15] |
Y. Yang and Q. Yang,
Further results for Perron-Frobenius theorem for nonnegative tensors, SIAM Journal on Matrix Analysis and Applications, 31 (2010), 2517-2530.
doi: 10.1137/090778766. |
[16] |
Q. Yang and Y. Yang,
Further results for Perron-Frobenius theorem for nonnegative tensors Ⅱ, SIAM Journal on Matrix Analysis and Applications, 32 (2011), 1236-1250.
doi: 10.1137/100813671. |
show all references
References:
[1] |
C. Bu, Y. Wei, L. Sun and J. Zhou,
Brualdi-type eigenvalue inclusion sets of tensors, Linear Algebra and its Applications, 480 (2015), 168-175.
doi: 10.1016/j.laa.2015.04.034. |
[2] |
C. J. Hillar and L. -H. Lim, Most tensor problems are NP-hard, Journal of the ACM (JACM), 60 (2013), Art. 45, 39 pp. |
[3] |
S. Hu, Z. Huang, C. Ling and L. Qi,
On determinants and eigenvalue theory of tensors, Journal of Symbolic Computation, 50 (2013), 508-531.
doi: 10.1016/j.jsc.2012.10.001. |
[4] |
Z. Huang, L. Wang, Z. Xu and J. Cui, A new S-type eigenvalue inclusion set for tensors and its applications, Journal of Inequalities and Applications, 2016 (2016), Paper No. 254, 19 pp. |
[5] |
C. Li, Y. Li and X. Kong,
New eigenvalue inclusion sets for tensors, Numerical Linear Algebra with Applications, 21 (2014), 39-50.
doi: 10.1002/nla.1858. |
[6] |
C. Li and Y. Li,
An eigenvalue localization set for tensors with applications to determine the positive (semi-) definiteness of tensors, Linear and Multilinear Algebra, 64 (2016), 587-601.
doi: 10.1080/03081087.2015.1049582. |
[7] |
C. Li, Z. Chen and Y. Li,
A new eigenvalue inclusion set for tensors and its applications, Linear Algebra and its Applications, 481 (2015), 36-53.
doi: 10.1016/j.laa.2015.04.023. |
[8] |
C. Li, A. Jiao and Y. Li,
An S-type eigenvalue localization set for tensors, Linear Algebra and its Applications, 493 (2016), 469-483.
doi: 10.1016/j.laa.2015.12.018. |
[9] |
C. Li, J. Zhou and Y. Li,
A new Brauer-type eigenvalue localization set for tensors, Linear and Multilinear Algebra, 64 (2016), 727-736.
doi: 10.1080/03081087.2015.1119779. |
[10] |
L. -H. Lim, Singular values and eigenvalues of tensors: A variational approach, in CAMSAP'05: Proceeding of the IEEE International Workshop on Computational Advances in MultiSensor Adaptive Processing, 2005,129–132. Google Scholar |
[11] |
L. Qi,
Eigenvalues of a real supersymmetric tensor, Journal of Symbolic Computation, 40 (2005), 1302-1324.
doi: 10.1016/j.jsc.2005.05.007. |
[12] |
L. Qi, Eigenvalues of a Supersymmetric Tensor and Positive Definiteness of an Even Degree Multivariate Form, Department of Applied Mathematics, The Hong Kong Polytechnic University, 2004. Google Scholar |
[13] |
C. Sang and J. Zhao, A new eigenvalue inclusion set for tensors with its applications, Cogent Mathematics, 4 (2017), 1320831.
doi: 10.1080/23311835.2017.1320831. |
[14] |
X. Wang and Y. Wei,
H-tensors and nonsingular H-tensors, Frontiers of Mathematics in China, 11 (2016), 557-575.
doi: 10.1007/s11464-015-0495-6. |
[15] |
Y. Yang and Q. Yang,
Further results for Perron-Frobenius theorem for nonnegative tensors, SIAM Journal on Matrix Analysis and Applications, 31 (2010), 2517-2530.
doi: 10.1137/090778766. |
[16] |
Q. Yang and Y. Yang,
Further results for Perron-Frobenius theorem for nonnegative tensors Ⅱ, SIAM Journal on Matrix Analysis and Applications, 32 (2011), 1236-1250.
doi: 10.1137/100813671. |



[1] |
Gang Wang, Guanglu Zhou, Louis Caccetta. Z-Eigenvalue Inclusion Theorems for Tensors. Discrete & Continuous Dynamical Systems - B, 2017, 22 (1) : 187-198. doi: 10.3934/dcdsb.2017009 |
[2] |
Gang Wang, Yuan Zhang. $ Z $-eigenvalue exclusion theorems for tensors. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-12. doi: 10.3934/jimo.2019039 |
[3] |
Chaoqian Li, Yajun Liu, Yaotang Li. Note on $ Z $-eigenvalue inclusion theorems for tensors. Journal of Industrial & Management Optimization, 2017, 13 (5) : 0-0. doi: 10.3934/jimo.2019129 |
[4] |
Caili Sang, Zhen Chen. $ E $-eigenvalue localization sets for tensors. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-19. doi: 10.3934/jimo.2019042 |
[5] |
Gang Wang, Yiju Wang, Yuan Zhang. Brualdi-type inequalities on the minimum eigenvalue for the Fan product of M-tensors. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-12. doi: 10.3934/jimo.2019069 |
[6] |
Zhen Wang, Wei Wu. Bounds for the greatest eigenvalue of positive tensors. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1031-1039. doi: 10.3934/jimo.2014.10.1031 |
[7] |
Yining Gu, Wei Wu. New bounds for eigenvalues of strictly diagonally dominant tensors. Numerical Algebra, Control & Optimization, 2018, 8 (2) : 203-210. doi: 10.3934/naco.2018012 |
[8] |
Fei-Ying Yang, Wan-Tong Li, Jian-Wen Sun. Principal eigenvalues for some nonlocal eigenvalue problems and applications. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 4027-4049. doi: 10.3934/dcds.2016.36.4027 |
[9] |
Mihai Mihăilescu. An eigenvalue problem possessing a continuous family of eigenvalues plus an isolated eigenvalue. Communications on Pure & Applied Analysis, 2011, 10 (2) : 701-708. doi: 10.3934/cpaa.2011.10.701 |
[10] |
Lixing Han. An unconstrained optimization approach for finding real eigenvalues of even order symmetric tensors. Numerical Algebra, Control & Optimization, 2013, 3 (3) : 583-599. doi: 10.3934/naco.2013.3.583 |
[11] |
Jun He, Guangjun Xu, Yanmin Liu. Some inequalities for the minimum M-eigenvalue of elasticity M-tensors. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-11. doi: 10.3934/jimo.2019092 |
[12] |
Haitao Che, Haibin Chen, Yiju Wang. On the M-eigenvalue estimation of fourth-order partially symmetric tensors. Journal of Industrial & Management Optimization, 2020, 16 (1) : 309-324. doi: 10.3934/jimo.2018153 |
[13] |
Piotr Kowalski. The existence of a solution for Dirichlet boundary value problem for a Duffing type differential inclusion. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2569-2580. doi: 10.3934/dcdsb.2014.19.2569 |
[14] |
Juan Meng, Yisheng Song. Upper bounds for Z$ _1 $-eigenvalues of generalized Hilbert tensors. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-8. doi: 10.3934/jimo.2018184 |
[15] |
Katja Polotzek, Kathrin Padberg-Gehle, Tobias Jäger. Set-oriented numerical computation of rotation sets. Journal of Computational Dynamics, 2017, 4 (1&2) : 119-141. doi: 10.3934/jcd.2017004 |
[16] |
Dietmar Szolnoki. Set oriented methods for computing reachable sets and control sets. Discrete & Continuous Dynamical Systems - B, 2003, 3 (3) : 361-382. doi: 10.3934/dcdsb.2003.3.361 |
[17] |
Antonia Chinnì, Roberto Livrea. Multiple solutions for a Neumann-type differential inclusion problem involving the $p(\cdot)$-Laplacian. Discrete & Continuous Dynamical Systems - S, 2012, 5 (4) : 753-764. doi: 10.3934/dcdss.2012.5.753 |
[18] |
Shu-Zhi Song, Shang-Jie Chen, Chun-Lei Tang. Existence of solutions for Kirchhoff type problems with resonance at higher eigenvalues. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6453-6473. doi: 10.3934/dcds.2016078 |
[19] |
Tien-Cuong Dinh, Nessim Sibony. Rigidity of Julia sets for Hénon type maps. Journal of Modern Dynamics, 2014, 8 (3&4) : 499-548. doi: 10.3934/jmd.2014.8.499 |
[20] |
Antonio Cañada, Antonio J. Ureña. Some new qualittative properties on the solvability set of pendulum-type equations. Conference Publications, 2001, 2001 (Special) : 66-73. doi: 10.3934/proc.2001.2001.66 |
2018 Impact Factor: 1.025
Tools
Metrics
Other articles
by authors
[Back to Top]