[1]
|
M. Bartusch, R. H. Mohring and F. J. Randermacher, Scheduling project networks with resource constraints and time windows, Annals of Operations Research, 16 (1988), 201-240.
|
[2]
|
A. Ben-Tal and A. Nemirovski, Lectures on Modern Convex Optimization, MOS-SIAM Series on Optimization, 2001.
|
[3]
|
J. Blazewicz, J. K. Lenstra and A. H. G. Kan Rinnooy, Scheduling subject to resource constraints: Classification and complexity, Discrete Applied Mathematics, 5 (1983), 11-24.
doi: 10.1016/0166-218X(83)90012-4.
|
[4]
|
S. Boyd and L. Vandenberghe, Semidefinite programming relaxations of non-convex problems in control and combinatorial optimization, Communications, Computation, Control, and Signal Processing, Springer, 1997,279-287
doi: 10.1007/978-1-4615-6281-8_15.
|
[5]
|
S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, first edition, 2004.
|
[6]
|
P. Brucker, Scheduling and constraint propagation, Discrete Applied Mathematics, 123 (2002), 227-256.
doi: 10.1016/S0166-218X(01)00342-0.
|
[7]
|
M. Goemans and D. Williamson, Imporved approximation algorihtms for maximum cut and satisfiablity problems using semidefinite programming, J. Assoc. Comput. Mach., 42 (1995), 1115-1145.
doi: 10.1145/227683.227684.
|
[8]
|
S. Hartmann and D. Briskorn, A survey of variants and extensions of the resource-constrained project scheduling problem, European Journal of Operational Research, 207 (2010), 1-14.
doi: 10.1016/j.ejor.2009.11.005.
|
[9]
|
D. Henrion, J. Lasserre and J. Loefberg, GloptiPoly 3: moments, optimization and semidefinite programming, Optim. Methods Softw., 24 (2009), 761-779, http://homepages.laas.fr/henrion/software/gloptipoly3.
doi: 10.1080/10556780802699201.
|
[10]
|
H. Li and N. K. Womer, Solving stochastic resource-constrained project scheduling problems by closed-loop approximate dynamic programming, European Journal of Operational Research, 246 (2015), 20-33.
doi: 10.1016/j.ejor.2015.04.015.
|
[11]
|
U. Malik, I. M. Jaimoukha, G. D. Halikias and S. K. Gungah, On the gap between the quadratic integer programming problem and its semidefinite relaxation, Math. Program., 107 (2006), 505-515.
doi: 10.1007/s10107-005-0692-2.
|
[12]
|
I. Pólik, Addendum to the SeDuMi user guide version 1.1, http://sedumi.ie.lehigh.edu/?page_id=58, 2005.
|
[13]
|
A. A. B. Pritsker, L. J. Watters and P. M. Wolfe, Multiproject scheduling with limited resources: A zero-one programming approach, Management Science, 16 (1969), 93-108.
doi: 10.1287/mnsc.16.1.93.
|
[14]
|
F. Rendl, Semidefinite relaxations for integer programming, 50 Years of Integer Programming 1958-2008, (2009), 687-726.
doi: 10.1007/978-3-540-68279-0_18.
|
[15]
|
N. Z. Shor, Quadratic optimization problems, Soviet. J. Comput. Systems Sci., 25 (1987), 1-11.
|
[16]
|
J. F. Sturm, Using SeDuMi 1.02, a matlab toolbox for optimizativer over smmetric cones, Optim. Methods Softw., 11/12 (1999), 625-653.
|
[17]
|
X. Sun and R. Li, New progress in integer programming, Operations Research Transactions, 18 (2014), 39-67.
|
[18]
|
L. Vandenerghe and S. Boyd, Semidefinite programming, SIAM Review, 38 (1996), 49-95.
doi: 10.1137/1038003.
|
[19]
|
H. Waki, S. Kim, M. Kojima and M. Muramatsu, Sums of squares and semidefinite program relaxations for polynomial optimization problems with structured sparsity, SIAM Journal on Optimization, 17 (2006), 218-242.
doi: 10.1137/050623802.
|
[20]
|
H. Wolkowicz, R. Saigak and L. Vandenerghe, Handbook of Semidefinite Programming, Kluwer's Publisher, 2000.
|
[21]
|
F. Zhang, The Schur Complement and Its Applications: Numerical Methods and Algorithms, Springer Science Business Media, 2005.
|
[22]
|
X. Zheng, X. Sun, D. Li and Y. Xia, Duality gap estimation of linear equality constraintd binary quadratic programming, Mathematics of Operations Research, 35 (2010), 864-880.
doi: 10.1287/moor.1100.0472.
|