April  2019, 15(2): 647-665. doi: 10.3934/jimo.2018063

Sufficiency and duality in non-smooth interval valued programming problems

1. 

Department of Applied Sciences, NITTTR (under Ministry of HRD, Govt. of India), Bhopal, M.P., India

2. 

Department of Mathematics, Rajiv Gandhi Proudyogiki Vishwavidyalaya, (State Technological University of M.P.), Bhopal, M.P., India

3. 

Department of Applied Mathematics, Pukyong National University, Busan, Korea

* Corresponding author: Do Sang Kim

Received  October 2015 Revised  March 2018 Published  June 2018

In this paper a non-smooth optimization problem is studied in an uncertain environment. The objective function of this problem is interval valued function. We introduce the class of $LU-(p,r)-[ρ^L,ρ^U]-(η, θ)$-invex interval valued functions about the Clarke generalized gradient. Then, through non trivial examples, we illustrate that the class of functions introduced exists. Based upon the proposed invexity assumptions, the sufficient optimality conditions are established. Further, we derive weak, strong and strict converse duality theorems for Mond-Weir type and Wolfe type dual programs. Some examples are also given in order to illustrate our results.

Citation: Deepak Singh, Bilal Ahmad Dar, Do Sang Kim. Sufficiency and duality in non-smooth interval valued programming problems. Journal of Industrial & Management Optimization, 2019, 15 (2) : 647-665. doi: 10.3934/jimo.2018063
References:
[1]

I. Ahmad, A. Jayswal and J. Banerjee, On interval-valued optimization problems with generalized invex functions, J. Inequal. Appl., 2013 (2013), 14pp. doi: 10.1186/1029-242X-2013-313.  Google Scholar

[2]

I. AhmadD. Singh and B. Ahmad, Optimality conditions for invex interval-valued nonlinear programming problems involving generalized H-derivative, Filomat, 30 (2016), 2121-2138.  doi: 10.2298/FIL1608121A.  Google Scholar

[3]

I. AhmadD. Singh and B. A. Dar, Optimality conditions in multiobjective programming problems with interval valued objective functions, Control Cybern., 44 (2015), 19-45.   Google Scholar

[4]

T. Antczak, $(p, r)$-invex sets and functions, J. Math. Anal. Appl., 263 (2001), 355-379.  doi: 10.1006/jmaa.2001.7574.  Google Scholar

[5]

A. Ben-Israel and P. D. Robers, A decomposition method for interval linear programming, Manage. Sci., 16 (1969/1970), 374-387.  doi: 10.1287/mnsc.16.5.374.  Google Scholar

[6]

A. Bhurjee and G. Panda, Efficient solution of interval optimization problem, Math. Methods Oper. Res., 76 (2012), 273-288.  doi: 10.1007/s00186-012-0399-0.  Google Scholar

[7]

Y. Chalco-CanoW. A. Lodwick and A. Rufian-Lizana, Optimality conditions of type KKT for optimization problem with interval-valued objective function via generalized derivative, Fuzzy Optim. Decis. Ma., 12 (2013), 305-322.  doi: 10.1007/s10700-013-9156-y.  Google Scholar

[8]

F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley-Interscience, New-York, 1983.  Google Scholar

[9]

M. A. Hanson, On sufficiency of the Kuhn-Tucker conditions, J. Math. Anal. Appl., 80 (1981), 545-550.  doi: 10.1016/0022-247X(81)90123-2.  Google Scholar

[10]

H. Ishibuchi and H. Tanaka, Multiobjective programming in optimization of interval valued objective functions, Eur. J. Oper. Res., 48 (1990), 219-225.   Google Scholar

[11]

M. Jana and G. Panda, Solution of nonlinear interval vector optimization problem, Oper. Res. Int. J., 14 (2014), 71-85.   Google Scholar

[12]

A. JayswalI. Stancu-Minasian and I. Ahmad, On sufficiency and duality for a class of interval-valued programming problems, Appl. Math. Comput., 218 (2011), 4119-4127.  doi: 10.1016/j.amc.2011.09.041.  Google Scholar

[13]

A. JayswalA. K. Prasad and I. Stancu-Minasian, On nonsmooth multiobjective fractional programming problems involving $(p, r)-ρ- (η, θ)$ -invex functions, Yugosl. J. Oper. Res., 23 (2013), 367-386.  doi: 10.2298/YJOR130131012J.  Google Scholar

[14]

C. JiangX. HanG. R. Liu and G. P. Liu, A nonlinear interval number programming method for uncertain optimization problems, Eur. J. Oper. Res., 188 (2008), 1-13.  doi: 10.1016/j.ejor.2007.03.031.  Google Scholar

[15]

P. Mandal and C. Nahak, Symmetric duality with $(p, r)-ρ-(η, θ)$-invexity, Appl. Math. Comput., 217 (2011), 8141-8148.  doi: 10.1016/j.amc.2011.02.068.  Google Scholar

[16]

D. SinghB. A. Dar and A. Goyal, KKT optimality conditions for interval valued optimization problems, J. Nonl. Anal. Optim., 5 (2014), 91-103.   Google Scholar

[17]

Y. Sun and L. Wang, Optimality conditions and duality in nondifferentiable interval valued programming, J. Ind. Manag. Optim., 9 (2013), 131-142.  doi: 10.3934/jimo.2013.9.131.  Google Scholar

[18]

Y. Sun and L. Wang, Mond Weir's type duality for interval valued programming, Computer Science and Automation Engineering (CSAE), IEEE International Conference, 3 (2012), 27-30.  doi: 10.1109/CSAE.2012.6272900.  Google Scholar

[19]

Y. SunX. Xu and L. Wang, Duality and saddle point type optimality for interval valued programming, Optim. Lett., 8 (2014), 1077-1091.  doi: 10.1007/s11590-013-0640-7.  Google Scholar

[20]

H. C. Wu, The Karush Kuhn Tuker optimality conditions in an optimization problem with interval valued objective functions, Eur. J. Oper. Res., 176 (2007), 46-59.  doi: 10.1016/j.ejor.2005.09.007.  Google Scholar

[21]

H. C. Wu, On interval valued nonlinear programming problems, J. Math. Anal. Appl., 338 (2008), 299-316.  doi: 10.1016/j.jmaa.2007.05.023.  Google Scholar

[22]

H. C. Wu, Wolfe duality for interval valued optimization, J. Optimiz. Theory App., 138 (2008), 497-509.  doi: 10.1007/s10957-008-9396-0.  Google Scholar

[23]

H. C. Wu, The Karush Kuhn Tucker optimality conditions in a multiobjective programming problem with interval valued objective functions, Eur. J. Oper. Res., 196 (2009), 49-60.  doi: 10.1016/j.ejor.2008.03.012.  Google Scholar

[24]

G. J. Zalmai, Generalized sufficiency criteria in continuous-time programming with application to a class of variational-type inequalities, J. Math. Anal. Appl., 153 (1990), 331-355.  doi: 10.1016/0022-247X(90)90217-4.  Google Scholar

[25]

J. ZhangS. LiuL. Li and Q. Feng, The KKT optimality conditions in a class of generalized convex optimization problems with an interval-valued objective function, Optim. Lett., 8 (2014), 607-631.  doi: 10.1007/s11590-012-0601-6.  Google Scholar

[26]

J. Zhang, Optimality condition and wolfe duality for invex interval-valued nonlinear programming problems, J. Appl. Math., (2013), Article ID 641345, 11 pages.  Google Scholar

[27]

H. C. Zhou and Y. J. Wang, Optimality conditions and mixed duality for interval valued optimization, Fuzzy Info. and Eng., 2 (2009), 1315-1323.  doi: 10.1007/978-3-642-03664-4_140.  Google Scholar

show all references

References:
[1]

I. Ahmad, A. Jayswal and J. Banerjee, On interval-valued optimization problems with generalized invex functions, J. Inequal. Appl., 2013 (2013), 14pp. doi: 10.1186/1029-242X-2013-313.  Google Scholar

[2]

I. AhmadD. Singh and B. Ahmad, Optimality conditions for invex interval-valued nonlinear programming problems involving generalized H-derivative, Filomat, 30 (2016), 2121-2138.  doi: 10.2298/FIL1608121A.  Google Scholar

[3]

I. AhmadD. Singh and B. A. Dar, Optimality conditions in multiobjective programming problems with interval valued objective functions, Control Cybern., 44 (2015), 19-45.   Google Scholar

[4]

T. Antczak, $(p, r)$-invex sets and functions, J. Math. Anal. Appl., 263 (2001), 355-379.  doi: 10.1006/jmaa.2001.7574.  Google Scholar

[5]

A. Ben-Israel and P. D. Robers, A decomposition method for interval linear programming, Manage. Sci., 16 (1969/1970), 374-387.  doi: 10.1287/mnsc.16.5.374.  Google Scholar

[6]

A. Bhurjee and G. Panda, Efficient solution of interval optimization problem, Math. Methods Oper. Res., 76 (2012), 273-288.  doi: 10.1007/s00186-012-0399-0.  Google Scholar

[7]

Y. Chalco-CanoW. A. Lodwick and A. Rufian-Lizana, Optimality conditions of type KKT for optimization problem with interval-valued objective function via generalized derivative, Fuzzy Optim. Decis. Ma., 12 (2013), 305-322.  doi: 10.1007/s10700-013-9156-y.  Google Scholar

[8]

F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley-Interscience, New-York, 1983.  Google Scholar

[9]

M. A. Hanson, On sufficiency of the Kuhn-Tucker conditions, J. Math. Anal. Appl., 80 (1981), 545-550.  doi: 10.1016/0022-247X(81)90123-2.  Google Scholar

[10]

H. Ishibuchi and H. Tanaka, Multiobjective programming in optimization of interval valued objective functions, Eur. J. Oper. Res., 48 (1990), 219-225.   Google Scholar

[11]

M. Jana and G. Panda, Solution of nonlinear interval vector optimization problem, Oper. Res. Int. J., 14 (2014), 71-85.   Google Scholar

[12]

A. JayswalI. Stancu-Minasian and I. Ahmad, On sufficiency and duality for a class of interval-valued programming problems, Appl. Math. Comput., 218 (2011), 4119-4127.  doi: 10.1016/j.amc.2011.09.041.  Google Scholar

[13]

A. JayswalA. K. Prasad and I. Stancu-Minasian, On nonsmooth multiobjective fractional programming problems involving $(p, r)-ρ- (η, θ)$ -invex functions, Yugosl. J. Oper. Res., 23 (2013), 367-386.  doi: 10.2298/YJOR130131012J.  Google Scholar

[14]

C. JiangX. HanG. R. Liu and G. P. Liu, A nonlinear interval number programming method for uncertain optimization problems, Eur. J. Oper. Res., 188 (2008), 1-13.  doi: 10.1016/j.ejor.2007.03.031.  Google Scholar

[15]

P. Mandal and C. Nahak, Symmetric duality with $(p, r)-ρ-(η, θ)$-invexity, Appl. Math. Comput., 217 (2011), 8141-8148.  doi: 10.1016/j.amc.2011.02.068.  Google Scholar

[16]

D. SinghB. A. Dar and A. Goyal, KKT optimality conditions for interval valued optimization problems, J. Nonl. Anal. Optim., 5 (2014), 91-103.   Google Scholar

[17]

Y. Sun and L. Wang, Optimality conditions and duality in nondifferentiable interval valued programming, J. Ind. Manag. Optim., 9 (2013), 131-142.  doi: 10.3934/jimo.2013.9.131.  Google Scholar

[18]

Y. Sun and L. Wang, Mond Weir's type duality for interval valued programming, Computer Science and Automation Engineering (CSAE), IEEE International Conference, 3 (2012), 27-30.  doi: 10.1109/CSAE.2012.6272900.  Google Scholar

[19]

Y. SunX. Xu and L. Wang, Duality and saddle point type optimality for interval valued programming, Optim. Lett., 8 (2014), 1077-1091.  doi: 10.1007/s11590-013-0640-7.  Google Scholar

[20]

H. C. Wu, The Karush Kuhn Tuker optimality conditions in an optimization problem with interval valued objective functions, Eur. J. Oper. Res., 176 (2007), 46-59.  doi: 10.1016/j.ejor.2005.09.007.  Google Scholar

[21]

H. C. Wu, On interval valued nonlinear programming problems, J. Math. Anal. Appl., 338 (2008), 299-316.  doi: 10.1016/j.jmaa.2007.05.023.  Google Scholar

[22]

H. C. Wu, Wolfe duality for interval valued optimization, J. Optimiz. Theory App., 138 (2008), 497-509.  doi: 10.1007/s10957-008-9396-0.  Google Scholar

[23]

H. C. Wu, The Karush Kuhn Tucker optimality conditions in a multiobjective programming problem with interval valued objective functions, Eur. J. Oper. Res., 196 (2009), 49-60.  doi: 10.1016/j.ejor.2008.03.012.  Google Scholar

[24]

G. J. Zalmai, Generalized sufficiency criteria in continuous-time programming with application to a class of variational-type inequalities, J. Math. Anal. Appl., 153 (1990), 331-355.  doi: 10.1016/0022-247X(90)90217-4.  Google Scholar

[25]

J. ZhangS. LiuL. Li and Q. Feng, The KKT optimality conditions in a class of generalized convex optimization problems with an interval-valued objective function, Optim. Lett., 8 (2014), 607-631.  doi: 10.1007/s11590-012-0601-6.  Google Scholar

[26]

J. Zhang, Optimality condition and wolfe duality for invex interval-valued nonlinear programming problems, J. Appl. Math., (2013), Article ID 641345, 11 pages.  Google Scholar

[27]

H. C. Zhou and Y. J. Wang, Optimality conditions and mixed duality for interval valued optimization, Fuzzy Info. and Eng., 2 (2009), 1315-1323.  doi: 10.1007/978-3-642-03664-4_140.  Google Scholar

Table 1.  Summary of Example 7.1 and Remark 7.2
Functions Valued of $\rho$ Domain
$f^L(x)$ $\rho^L=\frac{-0.1}{|x+0.01|^4}$ $x\in (-0.4599,1.0766)$
$f^U(x)$ $\rho^U=\frac{-0.09}{|x+0.01|^4}$ $x\in (-0.2362,1.1438)$
$\sum_{j=1}^2\mu_jg_j(x)$ $\rho=4$ $x\in (-0.5172,0.5172)$
$[f^L(x),f^U(x)]$ $[\rho^L,\rho^U]=\left[\frac{-0.1}{|x+0.01|^4},\frac{-0.09}{|x+0.01|^4}\right]$ $x\in(-0.4599,1.0766)\cap (-0.2362,1.1438)$
$f^L_0(x)$ $\rho^L_0=\frac{-0.13}{|x+0.01|^4}$ $x\in(-1.0567,1.0567)$
$[f^L_0(x),f^U(x)]$ $[\rho^L_0,\rho^U]=\left[\frac{-0.13}{|x+0.01|^4},\frac{-0.09}{|x+0.01|^4}\right]$ $x\in(-1.0567,1.0567)\cap(-0.2362,1.1438)$
Functions Valued of $\rho$ Domain
$f^L(x)$ $\rho^L=\frac{-0.1}{|x+0.01|^4}$ $x\in (-0.4599,1.0766)$
$f^U(x)$ $\rho^U=\frac{-0.09}{|x+0.01|^4}$ $x\in (-0.2362,1.1438)$
$\sum_{j=1}^2\mu_jg_j(x)$ $\rho=4$ $x\in (-0.5172,0.5172)$
$[f^L(x),f^U(x)]$ $[\rho^L,\rho^U]=\left[\frac{-0.1}{|x+0.01|^4},\frac{-0.09}{|x+0.01|^4}\right]$ $x\in(-0.4599,1.0766)\cap (-0.2362,1.1438)$
$f^L_0(x)$ $\rho^L_0=\frac{-0.13}{|x+0.01|^4}$ $x\in(-1.0567,1.0567)$
$[f^L_0(x),f^U(x)]$ $[\rho^L_0,\rho^U]=\left[\frac{-0.13}{|x+0.01|^4},\frac{-0.09}{|x+0.01|^4}\right]$ $x\in(-1.0567,1.0567)\cap(-0.2362,1.1438)$
[1]

Ruonan Liu, Run Xu. Hermite-Hadamard type inequalities for harmonical $ (h1,h2)- $convex interval-valued functions. Mathematical Foundations of Computing, 2021  doi: 10.3934/mfc.2021005

[2]

Khalid Latrach, Hssaine Oummi, Ahmed Zeghal. Existence results for nonlinear mono-energetic singular transport equations: $ L^p $-spaces. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021028

[3]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2635-3652. doi: 10.3934/dcds.2020378

[4]

Alfonso Castro, Jorge Cossio, Sigifredo Herrón, Carlos Vélez. Infinitely many radial solutions for a $ p $-Laplacian problem with indefinite weight. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021058

[5]

Said Taarabti. Positive solutions for the $ p(x)- $Laplacian : Application of the Nehari method. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021029

[6]

Raffaele Folino, Ramón G. Plaza, Marta Strani. Long time dynamics of solutions to $ p $-Laplacian diffusion problems with bistable reaction terms. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3211-3240. doi: 10.3934/dcds.2020403

[7]

Raj Kumar, Maheshanand Bhaintwal. Duadic codes over $ \mathbb{Z}_4+u\mathbb{Z}_4 $. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020135

[8]

Jong Yoon Hyun, Yoonjin Lee, Yansheng Wu. Connection of $ p $-ary $ t $-weight linear codes to Ramanujan Cayley graphs with $ t+1 $ eigenvalues. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020133

[9]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1631-1648. doi: 10.3934/dcdss.2020447

[10]

Anhui Gu. Weak pullback mean random attractors for non-autonomous $ p $-Laplacian equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3863-3878. doi: 10.3934/dcdsb.2020266

[11]

Caili Sang, Zhen Chen. Optimal $ Z $-eigenvalue inclusion intervals of tensors and their applications. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021075

[12]

Jiangang Qi, Bing Xie. Extremum estimates of the $ L^1 $-norm of weights for eigenvalue problems of vibrating string equations based on critical equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3505-3516. doi: 10.3934/dcdsb.2020243

[13]

Siqi Chen, Yong-Kui Chang, Yanyan Wei. Pseudo $ S $-asymptotically Bloch type periodic solutions to a damped evolution equation. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021017

[14]

Jennifer D. Key, Bernardo G. Rodrigues. Binary codes from $ m $-ary $ n $-cubes $ Q^m_n $. Advances in Mathematics of Communications, 2021, 15 (3) : 507-524. doi: 10.3934/amc.2020079

[15]

Chaoqian Li, Yajun Liu, Yaotang Li. Note on $ Z $-eigenvalue inclusion theorems for tensors. Journal of Industrial & Management Optimization, 2021, 17 (2) : 687-693. doi: 10.3934/jimo.2019129

[16]

Shixiong Wang, Longjiang Qu, Chao Li, Shaojing Fu, Hao Chen. Finding small solutions of the equation $ \mathit{{Bx-Ay = z}} $ and its applications to cryptanalysis of the RSA cryptosystem. Advances in Mathematics of Communications, 2021, 15 (3) : 441-469. doi: 10.3934/amc.2020076

[17]

Dean Crnković, Nina Mostarac, Bernardo G. Rodrigues, Leo Storme. $ s $-PD-sets for codes from projective planes $ \mathrm{PG}(2,2^h) $, $ 5 \leq h\leq 9 $. Advances in Mathematics of Communications, 2021, 15 (3) : 423-440. doi: 10.3934/amc.2020075

[18]

Shihu Li, Wei Liu, Yingchao Xie. Large deviations for stochastic 3D Leray-$ \alpha $ model with fractional dissipation. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2491-2509. doi: 10.3934/cpaa.2019113

[19]

Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195

[20]

Brian Ryals, Robert J. Sacker. Bifurcation in the almost periodic $ 2 $D Ricker map. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021089

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (194)
  • HTML views (1045)
  • Cited by (0)

Other articles
by authors

[Back to Top]