April  2019, 15(2): 647-665. doi: 10.3934/jimo.2018063

Sufficiency and duality in non-smooth interval valued programming problems

1. 

Department of Applied Sciences, NITTTR (under Ministry of HRD, Govt. of India), Bhopal, M.P., India

2. 

Department of Mathematics, Rajiv Gandhi Proudyogiki Vishwavidyalaya, (State Technological University of M.P.), Bhopal, M.P., India

3. 

Department of Applied Mathematics, Pukyong National University, Busan, Korea

* Corresponding author: Do Sang Kim

Received  October 2015 Revised  March 2018 Published  June 2018

In this paper a non-smooth optimization problem is studied in an uncertain environment. The objective function of this problem is interval valued function. We introduce the class of $LU-(p,r)-[ρ^L,ρ^U]-(η, θ)$-invex interval valued functions about the Clarke generalized gradient. Then, through non trivial examples, we illustrate that the class of functions introduced exists. Based upon the proposed invexity assumptions, the sufficient optimality conditions are established. Further, we derive weak, strong and strict converse duality theorems for Mond-Weir type and Wolfe type dual programs. Some examples are also given in order to illustrate our results.

Citation: Deepak Singh, Bilal Ahmad Dar, Do Sang Kim. Sufficiency and duality in non-smooth interval valued programming problems. Journal of Industrial & Management Optimization, 2019, 15 (2) : 647-665. doi: 10.3934/jimo.2018063
References:
[1]

I. Ahmad, A. Jayswal and J. Banerjee, On interval-valued optimization problems with generalized invex functions, J. Inequal. Appl., 2013 (2013), 14pp. doi: 10.1186/1029-242X-2013-313.  Google Scholar

[2]

I. AhmadD. Singh and B. Ahmad, Optimality conditions for invex interval-valued nonlinear programming problems involving generalized H-derivative, Filomat, 30 (2016), 2121-2138.  doi: 10.2298/FIL1608121A.  Google Scholar

[3]

I. AhmadD. Singh and B. A. Dar, Optimality conditions in multiobjective programming problems with interval valued objective functions, Control Cybern., 44 (2015), 19-45.   Google Scholar

[4]

T. Antczak, $(p, r)$-invex sets and functions, J. Math. Anal. Appl., 263 (2001), 355-379.  doi: 10.1006/jmaa.2001.7574.  Google Scholar

[5]

A. Ben-Israel and P. D. Robers, A decomposition method for interval linear programming, Manage. Sci., 16 (1969/1970), 374-387.  doi: 10.1287/mnsc.16.5.374.  Google Scholar

[6]

A. Bhurjee and G. Panda, Efficient solution of interval optimization problem, Math. Methods Oper. Res., 76 (2012), 273-288.  doi: 10.1007/s00186-012-0399-0.  Google Scholar

[7]

Y. Chalco-CanoW. A. Lodwick and A. Rufian-Lizana, Optimality conditions of type KKT for optimization problem with interval-valued objective function via generalized derivative, Fuzzy Optim. Decis. Ma., 12 (2013), 305-322.  doi: 10.1007/s10700-013-9156-y.  Google Scholar

[8]

F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley-Interscience, New-York, 1983.  Google Scholar

[9]

M. A. Hanson, On sufficiency of the Kuhn-Tucker conditions, J. Math. Anal. Appl., 80 (1981), 545-550.  doi: 10.1016/0022-247X(81)90123-2.  Google Scholar

[10]

H. Ishibuchi and H. Tanaka, Multiobjective programming in optimization of interval valued objective functions, Eur. J. Oper. Res., 48 (1990), 219-225.   Google Scholar

[11]

M. Jana and G. Panda, Solution of nonlinear interval vector optimization problem, Oper. Res. Int. J., 14 (2014), 71-85.   Google Scholar

[12]

A. JayswalI. Stancu-Minasian and I. Ahmad, On sufficiency and duality for a class of interval-valued programming problems, Appl. Math. Comput., 218 (2011), 4119-4127.  doi: 10.1016/j.amc.2011.09.041.  Google Scholar

[13]

A. JayswalA. K. Prasad and I. Stancu-Minasian, On nonsmooth multiobjective fractional programming problems involving $(p, r)-ρ- (η, θ)$ -invex functions, Yugosl. J. Oper. Res., 23 (2013), 367-386.  doi: 10.2298/YJOR130131012J.  Google Scholar

[14]

C. JiangX. HanG. R. Liu and G. P. Liu, A nonlinear interval number programming method for uncertain optimization problems, Eur. J. Oper. Res., 188 (2008), 1-13.  doi: 10.1016/j.ejor.2007.03.031.  Google Scholar

[15]

P. Mandal and C. Nahak, Symmetric duality with $(p, r)-ρ-(η, θ)$-invexity, Appl. Math. Comput., 217 (2011), 8141-8148.  doi: 10.1016/j.amc.2011.02.068.  Google Scholar

[16]

D. SinghB. A. Dar and A. Goyal, KKT optimality conditions for interval valued optimization problems, J. Nonl. Anal. Optim., 5 (2014), 91-103.   Google Scholar

[17]

Y. Sun and L. Wang, Optimality conditions and duality in nondifferentiable interval valued programming, J. Ind. Manag. Optim., 9 (2013), 131-142.  doi: 10.3934/jimo.2013.9.131.  Google Scholar

[18]

Y. Sun and L. Wang, Mond Weir's type duality for interval valued programming, Computer Science and Automation Engineering (CSAE), IEEE International Conference, 3 (2012), 27-30.  doi: 10.1109/CSAE.2012.6272900.  Google Scholar

[19]

Y. SunX. Xu and L. Wang, Duality and saddle point type optimality for interval valued programming, Optim. Lett., 8 (2014), 1077-1091.  doi: 10.1007/s11590-013-0640-7.  Google Scholar

[20]

H. C. Wu, The Karush Kuhn Tuker optimality conditions in an optimization problem with interval valued objective functions, Eur. J. Oper. Res., 176 (2007), 46-59.  doi: 10.1016/j.ejor.2005.09.007.  Google Scholar

[21]

H. C. Wu, On interval valued nonlinear programming problems, J. Math. Anal. Appl., 338 (2008), 299-316.  doi: 10.1016/j.jmaa.2007.05.023.  Google Scholar

[22]

H. C. Wu, Wolfe duality for interval valued optimization, J. Optimiz. Theory App., 138 (2008), 497-509.  doi: 10.1007/s10957-008-9396-0.  Google Scholar

[23]

H. C. Wu, The Karush Kuhn Tucker optimality conditions in a multiobjective programming problem with interval valued objective functions, Eur. J. Oper. Res., 196 (2009), 49-60.  doi: 10.1016/j.ejor.2008.03.012.  Google Scholar

[24]

G. J. Zalmai, Generalized sufficiency criteria in continuous-time programming with application to a class of variational-type inequalities, J. Math. Anal. Appl., 153 (1990), 331-355.  doi: 10.1016/0022-247X(90)90217-4.  Google Scholar

[25]

J. ZhangS. LiuL. Li and Q. Feng, The KKT optimality conditions in a class of generalized convex optimization problems with an interval-valued objective function, Optim. Lett., 8 (2014), 607-631.  doi: 10.1007/s11590-012-0601-6.  Google Scholar

[26]

J. Zhang, Optimality condition and wolfe duality for invex interval-valued nonlinear programming problems, J. Appl. Math., (2013), Article ID 641345, 11 pages.  Google Scholar

[27]

H. C. Zhou and Y. J. Wang, Optimality conditions and mixed duality for interval valued optimization, Fuzzy Info. and Eng., 2 (2009), 1315-1323.  doi: 10.1007/978-3-642-03664-4_140.  Google Scholar

show all references

References:
[1]

I. Ahmad, A. Jayswal and J. Banerjee, On interval-valued optimization problems with generalized invex functions, J. Inequal. Appl., 2013 (2013), 14pp. doi: 10.1186/1029-242X-2013-313.  Google Scholar

[2]

I. AhmadD. Singh and B. Ahmad, Optimality conditions for invex interval-valued nonlinear programming problems involving generalized H-derivative, Filomat, 30 (2016), 2121-2138.  doi: 10.2298/FIL1608121A.  Google Scholar

[3]

I. AhmadD. Singh and B. A. Dar, Optimality conditions in multiobjective programming problems with interval valued objective functions, Control Cybern., 44 (2015), 19-45.   Google Scholar

[4]

T. Antczak, $(p, r)$-invex sets and functions, J. Math. Anal. Appl., 263 (2001), 355-379.  doi: 10.1006/jmaa.2001.7574.  Google Scholar

[5]

A. Ben-Israel and P. D. Robers, A decomposition method for interval linear programming, Manage. Sci., 16 (1969/1970), 374-387.  doi: 10.1287/mnsc.16.5.374.  Google Scholar

[6]

A. Bhurjee and G. Panda, Efficient solution of interval optimization problem, Math. Methods Oper. Res., 76 (2012), 273-288.  doi: 10.1007/s00186-012-0399-0.  Google Scholar

[7]

Y. Chalco-CanoW. A. Lodwick and A. Rufian-Lizana, Optimality conditions of type KKT for optimization problem with interval-valued objective function via generalized derivative, Fuzzy Optim. Decis. Ma., 12 (2013), 305-322.  doi: 10.1007/s10700-013-9156-y.  Google Scholar

[8]

F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley-Interscience, New-York, 1983.  Google Scholar

[9]

M. A. Hanson, On sufficiency of the Kuhn-Tucker conditions, J. Math. Anal. Appl., 80 (1981), 545-550.  doi: 10.1016/0022-247X(81)90123-2.  Google Scholar

[10]

H. Ishibuchi and H. Tanaka, Multiobjective programming in optimization of interval valued objective functions, Eur. J. Oper. Res., 48 (1990), 219-225.   Google Scholar

[11]

M. Jana and G. Panda, Solution of nonlinear interval vector optimization problem, Oper. Res. Int. J., 14 (2014), 71-85.   Google Scholar

[12]

A. JayswalI. Stancu-Minasian and I. Ahmad, On sufficiency and duality for a class of interval-valued programming problems, Appl. Math. Comput., 218 (2011), 4119-4127.  doi: 10.1016/j.amc.2011.09.041.  Google Scholar

[13]

A. JayswalA. K. Prasad and I. Stancu-Minasian, On nonsmooth multiobjective fractional programming problems involving $(p, r)-ρ- (η, θ)$ -invex functions, Yugosl. J. Oper. Res., 23 (2013), 367-386.  doi: 10.2298/YJOR130131012J.  Google Scholar

[14]

C. JiangX. HanG. R. Liu and G. P. Liu, A nonlinear interval number programming method for uncertain optimization problems, Eur. J. Oper. Res., 188 (2008), 1-13.  doi: 10.1016/j.ejor.2007.03.031.  Google Scholar

[15]

P. Mandal and C. Nahak, Symmetric duality with $(p, r)-ρ-(η, θ)$-invexity, Appl. Math. Comput., 217 (2011), 8141-8148.  doi: 10.1016/j.amc.2011.02.068.  Google Scholar

[16]

D. SinghB. A. Dar and A. Goyal, KKT optimality conditions for interval valued optimization problems, J. Nonl. Anal. Optim., 5 (2014), 91-103.   Google Scholar

[17]

Y. Sun and L. Wang, Optimality conditions and duality in nondifferentiable interval valued programming, J. Ind. Manag. Optim., 9 (2013), 131-142.  doi: 10.3934/jimo.2013.9.131.  Google Scholar

[18]

Y. Sun and L. Wang, Mond Weir's type duality for interval valued programming, Computer Science and Automation Engineering (CSAE), IEEE International Conference, 3 (2012), 27-30.  doi: 10.1109/CSAE.2012.6272900.  Google Scholar

[19]

Y. SunX. Xu and L. Wang, Duality and saddle point type optimality for interval valued programming, Optim. Lett., 8 (2014), 1077-1091.  doi: 10.1007/s11590-013-0640-7.  Google Scholar

[20]

H. C. Wu, The Karush Kuhn Tuker optimality conditions in an optimization problem with interval valued objective functions, Eur. J. Oper. Res., 176 (2007), 46-59.  doi: 10.1016/j.ejor.2005.09.007.  Google Scholar

[21]

H. C. Wu, On interval valued nonlinear programming problems, J. Math. Anal. Appl., 338 (2008), 299-316.  doi: 10.1016/j.jmaa.2007.05.023.  Google Scholar

[22]

H. C. Wu, Wolfe duality for interval valued optimization, J. Optimiz. Theory App., 138 (2008), 497-509.  doi: 10.1007/s10957-008-9396-0.  Google Scholar

[23]

H. C. Wu, The Karush Kuhn Tucker optimality conditions in a multiobjective programming problem with interval valued objective functions, Eur. J. Oper. Res., 196 (2009), 49-60.  doi: 10.1016/j.ejor.2008.03.012.  Google Scholar

[24]

G. J. Zalmai, Generalized sufficiency criteria in continuous-time programming with application to a class of variational-type inequalities, J. Math. Anal. Appl., 153 (1990), 331-355.  doi: 10.1016/0022-247X(90)90217-4.  Google Scholar

[25]

J. ZhangS. LiuL. Li and Q. Feng, The KKT optimality conditions in a class of generalized convex optimization problems with an interval-valued objective function, Optim. Lett., 8 (2014), 607-631.  doi: 10.1007/s11590-012-0601-6.  Google Scholar

[26]

J. Zhang, Optimality condition and wolfe duality for invex interval-valued nonlinear programming problems, J. Appl. Math., (2013), Article ID 641345, 11 pages.  Google Scholar

[27]

H. C. Zhou and Y. J. Wang, Optimality conditions and mixed duality for interval valued optimization, Fuzzy Info. and Eng., 2 (2009), 1315-1323.  doi: 10.1007/978-3-642-03664-4_140.  Google Scholar

Table 1.  Summary of Example 7.1 and Remark 7.2
Functions Valued of $\rho$ Domain
$f^L(x)$ $\rho^L=\frac{-0.1}{|x+0.01|^4}$ $x\in (-0.4599,1.0766)$
$f^U(x)$ $\rho^U=\frac{-0.09}{|x+0.01|^4}$ $x\in (-0.2362,1.1438)$
$\sum_{j=1}^2\mu_jg_j(x)$ $\rho=4$ $x\in (-0.5172,0.5172)$
$[f^L(x),f^U(x)]$ $[\rho^L,\rho^U]=\left[\frac{-0.1}{|x+0.01|^4},\frac{-0.09}{|x+0.01|^4}\right]$ $x\in(-0.4599,1.0766)\cap (-0.2362,1.1438)$
$f^L_0(x)$ $\rho^L_0=\frac{-0.13}{|x+0.01|^4}$ $x\in(-1.0567,1.0567)$
$[f^L_0(x),f^U(x)]$ $[\rho^L_0,\rho^U]=\left[\frac{-0.13}{|x+0.01|^4},\frac{-0.09}{|x+0.01|^4}\right]$ $x\in(-1.0567,1.0567)\cap(-0.2362,1.1438)$
Functions Valued of $\rho$ Domain
$f^L(x)$ $\rho^L=\frac{-0.1}{|x+0.01|^4}$ $x\in (-0.4599,1.0766)$
$f^U(x)$ $\rho^U=\frac{-0.09}{|x+0.01|^4}$ $x\in (-0.2362,1.1438)$
$\sum_{j=1}^2\mu_jg_j(x)$ $\rho=4$ $x\in (-0.5172,0.5172)$
$[f^L(x),f^U(x)]$ $[\rho^L,\rho^U]=\left[\frac{-0.1}{|x+0.01|^4},\frac{-0.09}{|x+0.01|^4}\right]$ $x\in(-0.4599,1.0766)\cap (-0.2362,1.1438)$
$f^L_0(x)$ $\rho^L_0=\frac{-0.13}{|x+0.01|^4}$ $x\in(-1.0567,1.0567)$
$[f^L_0(x),f^U(x)]$ $[\rho^L_0,\rho^U]=\left[\frac{-0.13}{|x+0.01|^4},\frac{-0.09}{|x+0.01|^4}\right]$ $x\in(-1.0567,1.0567)\cap(-0.2362,1.1438)$
[1]

Aihua Fan, Jörg Schmeling, Weixiao Shen. $ L^\infty $-estimation of generalized Thue-Morse trigonometric polynomials and ergodic maximization. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 297-327. doi: 10.3934/dcds.2020363

[2]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[3]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[4]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

[5]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[6]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[7]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[8]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[9]

Wenjun Liu, Yukun Xiao, Xiaoqing Yue. Classification of finite irreducible conformal modules over Lie conformal algebra $ \mathcal{W}(a, b, r) $. Electronic Research Archive, , () : -. doi: 10.3934/era.2020123

[10]

Federico Rodriguez Hertz, Zhiren Wang. On $ \epsilon $-escaping trajectories in homogeneous spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 329-357. doi: 10.3934/dcds.2020365

[11]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[12]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[13]

Yu Zhou, Xinfeng Dong, Yongzhuang Wei, Fengrong Zhang. A note on the Signal-to-noise ratio of $ (n, m) $-functions. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020117

[14]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[15]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[16]

Yi-Hsuan Lin, Gen Nakamura, Roland Potthast, Haibing Wang. Duality between range and no-response tests and its application for inverse problems. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020072

[17]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[18]

José Madrid, João P. G. Ramos. On optimal autocorrelation inequalities on the real line. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020271

[19]

Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020346

[20]

Tommi Brander, Joonas Ilmavirta, Petteri Piiroinen, Teemu Tyni. Optimal recovery of a radiating source with multiple frequencies along one line. Inverse Problems & Imaging, 2020, 14 (6) : 967-983. doi: 10.3934/ipi.2020044

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (159)
  • HTML views (1044)
  • Cited by (0)

Other articles
by authors

[Back to Top]