April  2019, 15(2): 775-789. doi: 10.3934/jimo.2018070

Partially symmetric nonnegative rectangular tensors and copositive rectangular tensors

School of Mathematical Sciences, Tianjin University, Tianjin 300350, China

* Corresponding author: Wei Wu

Received  September 2016 Revised  December 2017 Published  June 2018

Fund Project: This work was supported by NSF grant of China (Grant No. 11371276)

In this paper, we prove a maximum property of the largest H-singular value of a partially symmetric nonnegative rectangular tensor, and establish some bounds for this singular value. Then we give the definition of copositive rectangular tensors. This concept extends from the concept of copositive square tensors. Partially symmetric nonnegative rectangular tensors and positive semi-definite rectangular tensors are examples of copositive rectangular tensors. We establish some necessary conditions and some sufficient conditions for a real partially symmetric rectangular tensor to be a copositive rectangular tensor. We also give an equivalent definition of strictly copositive rectangular tensors. Moreover, some further properties of copositive rectangular tensors are discussed.

Citation: Yining Gu, Wei Wu. Partially symmetric nonnegative rectangular tensors and copositive rectangular tensors. Journal of Industrial & Management Optimization, 2019, 15 (2) : 775-789. doi: 10.3934/jimo.2018070
References:
[1]

L. Bloy and R. Verma, On computing the underlying fiber directions from the diffusion orientation distribution function, In: Medical Image Computing and Computer-Assisted Intervention-MICCAI 2008, Springer, Berlin/Heidelberg, (2008), 1-8.  doi: 10.1007/978-3-540-85988-8_1.  Google Scholar

[2]

K. C. ChangL. Qi and G. Zhou, Singular values of real rectangular tensor, J. Math Anal. Appl., 370 (2010), 284-294.  doi: 10.1016/j.jmaa.2010.04.037.  Google Scholar

[3]

K. C. ChangK. Pearson and T. Zhang, Perron Frobenius Theorem for nonnegative tensors, Commun. Math. Sci., 6 (2008), 507-520.  doi: 10.4310/CMS.2008.v6.n2.a12.  Google Scholar

[4]

D. DahlJ. M. LeinassJ. Myrheim and E. Ovrum, A tensor product matrix approximation problem in quantum physics, Linear Algebra Appl., 420 (2007), 711-725.  doi: 10.1016/j.laa.2006.08.026.  Google Scholar

[5]

L. De LathauwerB. D. Moor and J. Vandewalle, On the best rank-1 and rank-$ (R_{1},R_{2},...,R_{N})$ approximation of higher-order tensors, SIAM J. Matrix Anal. Appl., 21 (2000), 1324-1342.  doi: 10.1137/S0895479898346995.  Google Scholar

[6]

A. EinsteinB. Podolsky and N. Rosen, Can quantum-mechanical description of physical reality be considered complete, Phys. Rev., 47 (1995), 777-780.  doi: 10.1103/PhysRev.47.777.  Google Scholar

[7]

J. K. Knowles and E. Sternberg, On the ellipticity of the equations of non-linear elastostatics for a special material, J. Elasticity, 5 (1975), 341-361.  doi: 10.1007/BF00126996.  Google Scholar

[8]

J. K. Knowles and E. Sternberg, On the failure of ellipticity of the equations for finite elastostatic plane strain, Arch. Ration. Mech. Anal., 63 (1997), 321-336.  doi: 10.1007/BF00279991.  Google Scholar

[9]

L. H. Lim, Singular values and eigenvalues of tensors: A variational approach, in CAMSAP'05: Proceeding of the IEEE International Workshop on Computational Advances in Multi-tensor Adaptive Processing, 2005, 129–132. Google Scholar

[10]

C. LingJ. NieL. Qi and Y. Ye, SDP and SOS relaxations for bi-quadratic optimization over unit spheres, SIAM J. Optim., 20 (2009), 1286-1310.  doi: 10.1137/080729104.  Google Scholar

[11]

M. NgL. Qi and G. Zhou, Finding the largest eigenvalue of a nonnegative tensor, SLAM J. Matrix Anal. Appl., 31 (2009), 1090-1099.  doi: 10.1137/09074838X.  Google Scholar

[12]

Q. NiL. Qi and F. Wang, An eigenvalue method for the positive definition identification problem, IEEE Transactions on Automatic Control, 53 (2008), 1096-1107.  doi: 10.1109/TAC.2008.923679.  Google Scholar

[13]

L. Qi, Eigenvalues of a real supersymmetric tensor, J. Symbolic Comput., 40 (2005), 1302-1324.  doi: 10.1016/j.jsc.2005.05.007.  Google Scholar

[14]

L. QiW. Sun and Y. Wang, Numerical multilinear algebra and its applications, Front. Math. China, 2 (2007), 501-526.  doi: 10.1007/s11464-007-0031-4.  Google Scholar

[15]

L. QiY. Wang and E. X. Wu, D-eigenvalues of diffusion kurtosis tensor, Journal of Computational and Applied Mathematics, 221 (2008), 150-157.  doi: 10.1016/j.cam.2007.10.012.  Google Scholar

[16]

L. Qi, Symmetric nonnegative tensors and copositive tensors, Linear Algebra Appl., 439 (2013), 228-238.  doi: 10.1016/j.laa.2013.03.015.  Google Scholar

[17]

L. QiH. H. Dai and D. Han, Conditions for strong ellipticity and $M$-eigenvalues, Front. Math. China, 4 (2009), 349-364.  doi: 10.1007/s11464-009-0016-6.  Google Scholar

[18]

P. Rosakis, Ellipticity and deformations with discontinuous deformation gradients in finite elastostatics, Arch. Ration. Mech. Anal., 109 (1990), 1-37.  doi: 10.1007/BF00377977.  Google Scholar

[19]

E. Schrödinger, Die gegenwärtige situation in der quantenmechanik, Naturwissenschaften, Naturwissenschaften, 23 (1935), 807-812,823-828,844-849. Google Scholar

[20]

H. C. Simpson and S. J. Spector, On copositive matrices and strong ellipticity for isotropic elastic materials, Arch. Ration. Mech. Anal., 84 (1983), 55-68.  doi: 10.1007/BF00251549.  Google Scholar

[21]

Y. Song and L. Qi, Necessary and sufficient conditions for copositive tensors, Linear Multilinear Algebra, 63 (2015), 120-131.  doi: 10.1080/03081087.2013.851198.  Google Scholar

[22]

Y. Wang and M. Aron, A reformulation of the strong ellipticity conditions for unconstrained hyperelastic media, J. Elasticity, 44 (1996), 89-96.  doi: 10.1007/BF00042193.  Google Scholar

[23]

Y. WangL. Qi and X. Zhang, A practical method for computing the largest $M$-eigenvalue of a fourth-order partially symmetric tensor, Numerical Linear Algebra with Applications, 16 (2009), 589-601.  doi: 10.1002/nla.633.  Google Scholar

[24]

Y. N. Yang and Q. Yang, Singular values of nonnegative rectangular tensors, Front. Math. China, 6 (2011), 363-378.  doi: 10.1007/s11464-011-0108-y.  Google Scholar

[25]

L. ZhangL. QiZ. Luo and Y. Xu, The dominant eigenvalue of an essentially nonnegative tensor, Numerical Linear Algebra with Applications, 20 (2013), 929-941.  doi: 10.1002/nla.1880.  Google Scholar

show all references

References:
[1]

L. Bloy and R. Verma, On computing the underlying fiber directions from the diffusion orientation distribution function, In: Medical Image Computing and Computer-Assisted Intervention-MICCAI 2008, Springer, Berlin/Heidelberg, (2008), 1-8.  doi: 10.1007/978-3-540-85988-8_1.  Google Scholar

[2]

K. C. ChangL. Qi and G. Zhou, Singular values of real rectangular tensor, J. Math Anal. Appl., 370 (2010), 284-294.  doi: 10.1016/j.jmaa.2010.04.037.  Google Scholar

[3]

K. C. ChangK. Pearson and T. Zhang, Perron Frobenius Theorem for nonnegative tensors, Commun. Math. Sci., 6 (2008), 507-520.  doi: 10.4310/CMS.2008.v6.n2.a12.  Google Scholar

[4]

D. DahlJ. M. LeinassJ. Myrheim and E. Ovrum, A tensor product matrix approximation problem in quantum physics, Linear Algebra Appl., 420 (2007), 711-725.  doi: 10.1016/j.laa.2006.08.026.  Google Scholar

[5]

L. De LathauwerB. D. Moor and J. Vandewalle, On the best rank-1 and rank-$ (R_{1},R_{2},...,R_{N})$ approximation of higher-order tensors, SIAM J. Matrix Anal. Appl., 21 (2000), 1324-1342.  doi: 10.1137/S0895479898346995.  Google Scholar

[6]

A. EinsteinB. Podolsky and N. Rosen, Can quantum-mechanical description of physical reality be considered complete, Phys. Rev., 47 (1995), 777-780.  doi: 10.1103/PhysRev.47.777.  Google Scholar

[7]

J. K. Knowles and E. Sternberg, On the ellipticity of the equations of non-linear elastostatics for a special material, J. Elasticity, 5 (1975), 341-361.  doi: 10.1007/BF00126996.  Google Scholar

[8]

J. K. Knowles and E. Sternberg, On the failure of ellipticity of the equations for finite elastostatic plane strain, Arch. Ration. Mech. Anal., 63 (1997), 321-336.  doi: 10.1007/BF00279991.  Google Scholar

[9]

L. H. Lim, Singular values and eigenvalues of tensors: A variational approach, in CAMSAP'05: Proceeding of the IEEE International Workshop on Computational Advances in Multi-tensor Adaptive Processing, 2005, 129–132. Google Scholar

[10]

C. LingJ. NieL. Qi and Y. Ye, SDP and SOS relaxations for bi-quadratic optimization over unit spheres, SIAM J. Optim., 20 (2009), 1286-1310.  doi: 10.1137/080729104.  Google Scholar

[11]

M. NgL. Qi and G. Zhou, Finding the largest eigenvalue of a nonnegative tensor, SLAM J. Matrix Anal. Appl., 31 (2009), 1090-1099.  doi: 10.1137/09074838X.  Google Scholar

[12]

Q. NiL. Qi and F. Wang, An eigenvalue method for the positive definition identification problem, IEEE Transactions on Automatic Control, 53 (2008), 1096-1107.  doi: 10.1109/TAC.2008.923679.  Google Scholar

[13]

L. Qi, Eigenvalues of a real supersymmetric tensor, J. Symbolic Comput., 40 (2005), 1302-1324.  doi: 10.1016/j.jsc.2005.05.007.  Google Scholar

[14]

L. QiW. Sun and Y. Wang, Numerical multilinear algebra and its applications, Front. Math. China, 2 (2007), 501-526.  doi: 10.1007/s11464-007-0031-4.  Google Scholar

[15]

L. QiY. Wang and E. X. Wu, D-eigenvalues of diffusion kurtosis tensor, Journal of Computational and Applied Mathematics, 221 (2008), 150-157.  doi: 10.1016/j.cam.2007.10.012.  Google Scholar

[16]

L. Qi, Symmetric nonnegative tensors and copositive tensors, Linear Algebra Appl., 439 (2013), 228-238.  doi: 10.1016/j.laa.2013.03.015.  Google Scholar

[17]

L. QiH. H. Dai and D. Han, Conditions for strong ellipticity and $M$-eigenvalues, Front. Math. China, 4 (2009), 349-364.  doi: 10.1007/s11464-009-0016-6.  Google Scholar

[18]

P. Rosakis, Ellipticity and deformations with discontinuous deformation gradients in finite elastostatics, Arch. Ration. Mech. Anal., 109 (1990), 1-37.  doi: 10.1007/BF00377977.  Google Scholar

[19]

E. Schrödinger, Die gegenwärtige situation in der quantenmechanik, Naturwissenschaften, Naturwissenschaften, 23 (1935), 807-812,823-828,844-849. Google Scholar

[20]

H. C. Simpson and S. J. Spector, On copositive matrices and strong ellipticity for isotropic elastic materials, Arch. Ration. Mech. Anal., 84 (1983), 55-68.  doi: 10.1007/BF00251549.  Google Scholar

[21]

Y. Song and L. Qi, Necessary and sufficient conditions for copositive tensors, Linear Multilinear Algebra, 63 (2015), 120-131.  doi: 10.1080/03081087.2013.851198.  Google Scholar

[22]

Y. Wang and M. Aron, A reformulation of the strong ellipticity conditions for unconstrained hyperelastic media, J. Elasticity, 44 (1996), 89-96.  doi: 10.1007/BF00042193.  Google Scholar

[23]

Y. WangL. Qi and X. Zhang, A practical method for computing the largest $M$-eigenvalue of a fourth-order partially symmetric tensor, Numerical Linear Algebra with Applications, 16 (2009), 589-601.  doi: 10.1002/nla.633.  Google Scholar

[24]

Y. N. Yang and Q. Yang, Singular values of nonnegative rectangular tensors, Front. Math. China, 6 (2011), 363-378.  doi: 10.1007/s11464-011-0108-y.  Google Scholar

[25]

L. ZhangL. QiZ. Luo and Y. Xu, The dominant eigenvalue of an essentially nonnegative tensor, Numerical Linear Algebra with Applications, 20 (2013), 929-941.  doi: 10.1002/nla.1880.  Google Scholar

[1]

Yiju Wang, Guanglu Zhou, Louis Caccetta. Nonsingular $H$-tensor and its criteria. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1173-1186. doi: 10.3934/jimo.2016.12.1173

[2]

Jan Boman, Vladimir Sharafutdinov. Stability estimates in tensor tomography. Inverse Problems & Imaging, 2018, 12 (5) : 1245-1262. doi: 10.3934/ipi.2018052

[3]

Yuning Liu, Wei Wang. On the initial boundary value problem of a Navier-Stokes/$Q$-tensor model for liquid crystals. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3879-3899. doi: 10.3934/dcdsb.2018115

[4]

Vilmos Komornik, Bernadette Miara. Cross-like internal observability of rectangular membranes. Evolution Equations & Control Theory, 2014, 3 (1) : 135-146. doi: 10.3934/eect.2014.3.135

[5]

Vilmos Komornik, Paola Loreti. Observability of rectangular membranes and plates on small sets. Evolution Equations & Control Theory, 2014, 3 (2) : 287-304. doi: 10.3934/eect.2014.3.287

[6]

Alberto Ferrero, Filippo Gazzola. A partially hinged rectangular plate as a model for suspension bridges. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5879-5908. doi: 10.3934/dcds.2015.35.5879

[7]

Hisashi Nishiyama. Boundary stabilization of the waves in partially rectangular domains. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1583-1601. doi: 10.3934/dcds.2013.33.1583

[8]

Ernesto A. Lacomba, Mario Medina. Oscillatory motions in the rectangular four body problem. Discrete & Continuous Dynamical Systems - S, 2008, 1 (4) : 557-587. doi: 10.3934/dcdss.2008.1.557

[9]

Jifeng Chu, Maurizio Garrione, Filippo Gazzola. Stability analysis in some strongly prestressed rectangular plates. Evolution Equations & Control Theory, 2020, 9 (1) : 275-299. doi: 10.3934/eect.2020006

[10]

Mengmeng Zheng, Ying Zhang, Zheng-Hai Huang. Global error bounds for the tensor complementarity problem with a P-tensor. Journal of Industrial & Management Optimization, 2019, 15 (2) : 933-946. doi: 10.3934/jimo.2018078

[11]

Joyce R. McLaughlin and Arturo Portnoy. Perturbation expansions for eigenvalues and eigenvectors for a rectangular membrane subject to a restorative force. Electronic Research Announcements, 1997, 3: 72-77.

[12]

Johannes Elschner, Guanghui Hu, Masahiro Yamamoto. Uniqueness in inverse elastic scattering from unbounded rigid surfaces of rectangular type. Inverse Problems & Imaging, 2015, 9 (1) : 127-141. doi: 10.3934/ipi.2015.9.127

[13]

Nicolas Van Goethem. The Frank tensor as a boundary condition in intrinsic linearized elasticity. Journal of Geometric Mechanics, 2016, 8 (4) : 391-411. doi: 10.3934/jgm.2016013

[14]

Henry O. Jacobs, Hiroaki Yoshimura. Tensor products of Dirac structures and interconnection in Lagrangian mechanics. Journal of Geometric Mechanics, 2014, 6 (1) : 67-98. doi: 10.3934/jgm.2014.6.67

[15]

François Monard. Efficient tensor tomography in fan-beam coordinates. Inverse Problems & Imaging, 2016, 10 (2) : 433-459. doi: 10.3934/ipi.2016007

[16]

Kaili Zhang, Haibin Chen, Pengfei Zhao. A potential reduction method for tensor complementarity problems. Journal of Industrial & Management Optimization, 2019, 15 (2) : 429-443. doi: 10.3934/jimo.2018049

[17]

Hongbiao Fan, Jun-E Feng, Min Meng. Piecewise observers of rectangular discrete fuzzy descriptor systems with multiple time-varying delays. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1535-1556. doi: 10.3934/jimo.2016.12.1535

[18]

Mao Chen, Xiangyang Tang, Zhizhong Zeng, Sanya Liu. An efficient heuristic algorithm for two-dimensional rectangular packing problem with central rectangle. Journal of Industrial & Management Optimization, 2020, 16 (1) : 495-510. doi: 10.3934/jimo.2018164

[19]

François Monard. Efficient tensor tomography in fan-beam coordinates. Ⅱ: Attenuated transforms. Inverse Problems & Imaging, 2018, 12 (2) : 433-460. doi: 10.3934/ipi.2018019

[20]

Zhong Wan, Chunhua Yang. New approach to global minimization of normal multivariate polynomial based on tensor. Journal of Industrial & Management Optimization, 2008, 4 (2) : 271-285. doi: 10.3934/jimo.2008.4.271

2018 Impact Factor: 1.025

Article outline

[Back to Top]