In this paper we introduce a notion of Henig proper efficiency for constrained vector optimization problems in the setting of variable ordering structure. In order to get an appropriate concept, we have to explore firstly the case of fixed ordering structure and to observe that, in certain situations, the well-known Henig proper efficiency can be expressed in a simpler way. Then, we observe that the newly introduced notion can be reduced, by a Clarke-type penalization result, to the notion of unconstrained robust efficiency. We show that this penalization technique, coupled with sufficient conditions for weak openness, serves as a basis for developing necessary optimality conditions for our Henig proper efficiency in terms of generalized differentiation objects lying in both primal and dual spaces.
Citation: |
[1] |
J. P. Aubin and H. Frankowska,
Set-Valued Analysis, Birkäuser, Basel, 1990.
doi: 10.1007/978-0-8176-4848-0.![]() ![]() ![]() |
[2] |
F. H. Clarke,
Optimization and Nonsmooth Analysis, Wiley, New York, 1983.
doi: 10.1137/1.9781611971309.![]() ![]() ![]() |
[3] |
M. Durea, Some cone separation results and applications, Rev. Anal. Numer. Theor. Approx., 37 (2008), 37-46.
![]() ![]() |
[4] |
M. Durea, M. Panţiruc and R. Strugariu, Minimal time function with respect to a set of directions. Basic properties and applications, Optim. Methods Softw., 31 (2016), 535-561.
doi: 10.1080/10556788.2015.1121488.![]() ![]() ![]() |
[5] |
M. Durea and R. Strugariu, Generalized penalization and maximization of vectorial nonsmooth functions, Optimization, 66 (2017), 903-915.
doi: 10.1080/02331934.2016.1237515.![]() ![]() ![]() |
[6] |
M. Durea, R. Strugariu and C. Tammer, On set-valued optimization problems with variable ordering structure, J. Global Optim., 61 (2015), 745-767.
doi: 10.1007/s10898-014-0207-x.![]() ![]() ![]() |
[7] |
G. Eichfelder,
Variable Ordering Structures in Vector Optimization, Springer, Heidelberg, 2014.
doi: 10.1007/978-3-642-54283-1.![]() ![]() ![]() |
[8] |
G. Eichfelder and T. Gerlach, Characterization of properly optimal elements with variable ordering structures, Optimization, 65 (2016), 571-588.
doi: 10.1080/02331934.2015.1040793.![]() ![]() ![]() |
[9] |
G. Eichfelder and R. Kasimbeyli, Properly optimal elements in vector optimization with variable ordering structures, J. Global Optim., 60 (2014), 689-712.
doi: 10.1007/s10898-013-0132-4.![]() ![]() ![]() |
[10] |
E.-A. Florea, Coderivative necessary optimality conditions for sharp and robust efficiencies in vector optimization with variable ordering structure, Optimization, 65 (2016), 1417-1435.
doi: 10.1080/02331934.2016.1152473.![]() ![]() ![]() |
[11] |
A. Göpfert, H. Riahi, C. Tammer and C. Zălinescu,
Variational Methods in Partially Ordered Spaces, Springer, Berlin, 2003.
doi: 10.1007/b97568.![]() ![]() ![]() |
[12] |
S. Li, J.-P. Penot and X. Xue, Codifferential calculus, Set-Valued Var. Anal., 19 (2011), 505-536.
doi: 10.1007/s11228-010-0171-7.![]() ![]() ![]() |
[13] |
B. S. Mordukhovich,
Variational Analysis and Generalized Differentiation, Vol. Ⅰ: Basic Theory, Springer, Berlin, 2006.
doi: 10.1007/3-540-31247-1.![]() ![]() ![]() |
[14] |
H. V. Ngai, H. T. Nguyen and M. Théra, Metric regularity of the sum of multifunctions and applications, J. Optim. Theory Appl., 160 (2014), 355-390.
doi: 10.1007/s10957-013-0385-6.![]() ![]() ![]() |
[15] |
J.-P. Penot, Cooperative behavior of functions, relations and sets, Math.Methods Oper. Res., 48 (1998), 229-246.
doi: 10.1007/s001860050025.![]() ![]() ![]() |
[16] |
R. T. Rockafellar, Proto-differentiability of set-valued mappings and its applications in optimization, Ann. Inst. H. Poincaré, 6 (1989), 449-482.
doi: 10.1016/S0294-1449(17)30034-3.![]() ![]() ![]() |
[17] |
Y. Xu and S. Li, Continuity of the solution mappings to parametric generalized non-weak vector Ky Fan inequalities, J. Ind. Manag. Optim., 13 (2017), 967-975.
doi: 10.3934/jimo.2016056.![]() ![]() ![]() |
[18] |
J. J. Ye, The exact penalty principle, Nonlinear Anal. TMA, 75 (2012), 1642-1654.
doi: 10.1016/j.na.2011.03.025.![]() ![]() ![]() |
[19] |
C. Zălinescu,
Convex Analysis in General Vector Spaces, World Scientific, Singapore, 2002.
doi: 10.1142/9789812777096.![]() ![]() ![]() |
[20] |
C. Zălinescu, Stability for a class of nonlinear optimization problems and applications, in
Nonsmooth Optimization and Related Topics (Erice, 1989), Plenum, New York, 43 (1989),
437–458.
doi: 10.1007/978-1-4757-6019-4_26.![]() ![]() ![]() |