\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

An integrated Principal Component Analysis and multi-objective mathematical programming approach to agile supply chain network design under uncertainty

The authors are supported by INSF grant (Iran National Science Foundation).
Abstract / Introduction Full Text(HTML) Figure(3) / Table(11) Related Papers Cited by
  • The design of agile supply chain networks has attracted more attention in recent years according to the competitive business environment. Further, due to high degree of uncertainty in agile supply chains (SCs), developing robust and efficient decision making tools are of interest. In this study, an integrated approach based on principal component analysis (PCA) and multi-objective possibilistic mixed integer programming (MOPMIP) approaches is proposed to optimally design agile supply chain network under uncertainty. The PCA method is used for ranking and filtering the suppliers, constituting the first layer of the supply chain, based on agility criteria. The proposed MOPMIP model is employed to construct the agile supply chain network under uncertainty. In the proposed MOPMIP model, three objective functions including 1) total costs minimization, 2) total delivery time minimization and 3) maximization of flexibility are considered. An interactive fuzzy solution approach is used to solve the proposed MOPMILP model. Two numerical examples, is conducted to evaluate the performance and efficiency of the proposed integrated approach for agile supply chain network design under uncertainty.

    Mathematics Subject Classification: Primary: 35Q90, 97N60, 65K05; Secondary: 90C70, 90C10, 90C29.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Here is the Caption of your figure

    Figure 2.  Eigenvalue scree plot

    Figure 3.  The Pareto optimal solutions for normalized values of first test problem

    Table 1.  The primary defined input attributes for suppliers selection

    RowInput attributeRowInput attribute
    1Number of facilities21Working hours
    2Staff training22Bureaucratic
    3Education managers23Defective products
    4Standard simple mentation in organizations24Material requirements planning
    5In Stock25Distribution plan
    6Product price26The geographical location of the factory
    7Product variety27The geographical area covered
    8Transportation28The political situation in the regions covered
    9Waste29Infrastructure
    10Market share30After Sales Service
    11Career Opportunities31Technical Support
    12The use of new technology32Management
    13Production Volume33Response to Customer Request
    14Automation34E-commerce Capability
    15Communication System35JIT
    16Delivery36Packing Ability
    17Time of preparation37Position in the industry
    18Lot Size38Product appearance
    19Work in process (WIP)39Quality
    20Specialist operators
     | Show Table
    DownLoad: CSV

    Table 2.  The most important agility criteria filtered through conducting brain storming meeting

    Input indicatorsRow
    1Specialist operators
    2The use of new technology
    3Material requirements planning
    4Distribution plan
    5Response to Customer Request
    6Technical Support
    7E-commerce Capability
    8Product variety
    9Production Volume
    10Transportation
    11After Sales Service
    12Automation
    13Communication System
    14JIT
    15Quality
    16The geographical area covered
     | Show Table
    DownLoad: CSV

    Table 3.  The performance indicators of suppliers

    Output indicatorsRow
    1Product price
    2Bureaucratic
    3Delivery time
    4Work in Process (WIP)
     | Show Table
    DownLoad: CSV

    Table 4.  Total Variance of components

    ComponentInitial Eigenvalue
    TotalPercentage of VarianceCumulative Percentage
    12.07412.96512.965
    21.80311.26724.232
    31.5759.84334.075
    41.3808.62542.700
    51.3348.33651.036
    61.1817.38358.419
    71.0276.41864.836
    80.9355.84170.677
    90.8845.52376.200
    100.7934.95981.159
    110.7204.49885.656
    120.6243.89889.554
    130.5803.62493.178
    140.4232.64295.820
    150.3622.26598.086
    160.3061.914100.000
     | Show Table
    DownLoad: CSV

    Table 5.  Total Variance of components

    ComponentExtraction Sums of Squared LoadingsRotation Sums of Squared Loadings
    TotalPercentage of VarianceCumulative PercentageTotalPercentage of VarianceCumulative Percentage
    12.07412.96512.9651.5489.6759.675
    21.80311.26724.2321.5479.67219.347
    31.5759.84334.0751.5109.44028.787
    41.3808.62542.7001.5069.41038.197
    51.3348.33651.0361.4609.12647.324
    61.1817.38358.4191.4018.75756.081
    71.0276.41864.8361.4018.75564.836
     | Show Table
    DownLoad: CSV

    Table 6.  Rotated components

    VariablesComponents
    1234567
    X10.042-0.1920.615-0.2110.159-0.273-0.029
    X2-0.1750.176-0.015-0.065-0.709-0.101-0.061
    X3-0.083-0.096-0.1450.479-0.4400.219-0.067
    X40.1200.177-0.2200.6090.221-0.251-0.108
    X5-0.208-0.8270.0650.1390.0480.2630.109
    X6-0.2230.571-0.2070.0990.2560.1820.418
    X70.133-0.1340.2050.753-0.0700.0730.037
    X8-0.0730.004-0.090-0.018-0.016-0.729-0.123
    X90.8410.0350.1350.0220.083-0.0110.014
    X100.551-0.016-0.1000.309-0.0350.370-0.010
    X11-0.1100.2280.6950.2210.1900.141-0.097
    X12-0.2580.5410.1550.034-0.2830.2920.244
    X130.175-0.166-0.147-0.2810.1510.506-0.591
    X14-0.1770.115-0.6370.0140.262-0.176-0.120
    X15-0.4640.1590.031-0.0860.629-0.029-0.048
    X160.1110.005-0.030-0.1630.0720.1910.861
     | Show Table
    DownLoad: CSV

    Table 7.  Suppliers scores driven out via PCA approach

    SupplierScoreSupplierScoreSupplierScoreSupplierScore
    1-0.4414316-0.4509331-0.70673460.22046
    2-0.3994817-0.16193320.52357470.646209
    30.079517180.41908330.57433948-0.2407
    4-0.0185419-0.05046340.054961490.430716
    50.06819200.01026435-0.3108500.175306
    6-0.1633921-0.2980536-0.2968151-0.12202
    7-0.47472220.283236370.379933520.065461
    8-0.2640923-0.10214380.08338653-0.80726
    90.35943424-0.387439-0.1178554-0.19505
    10-0.48728250.278027400.092893550.258526
    110.044161260.19624741-0.19233560.570286
    120.50004270.194767420.121639570.265066
    131.064131280.00978343-0.39538580.098087
    14-0.7230529-0.08439440.67646459-0.50213
    15-0.19635300.26665345-0.0272160-0.39293
     | Show Table
    DownLoad: CSV

    Table 8.  The sources of random generation of the most likely values

    ParameterValueParameterValue
    $\tilde fs_{st}$ $ \sim Uniform(1800000, 4300000)$$\tilde Tr4_{idclt}$ $ \sim Uniform(80, 100)$
    $\tilde fp_{pt}$$ \sim Uniform(1700000, 4000000)$$\tilde Cost_{mspt}$$ \sim Uniform(20, 40)$
    $\tilde fd_{dt}$$ \sim Uniform(1600000, 3000000)$$\tilde MI_{id}$$ \sim Uniform(100, 120)$
    $\tilde fse_{st}$$ \sim Uniform(180000, 480000)$$\tilde CPA1_{pft}$$ \sim Uniform(50000, 60000)$
    $\tilde fpe_{pt}$$ \sim Uniform(170000, 400000)$$\tilde CPA2_{djt}$$ \sim Uniform(30000, 35000)$
    $\tilde fde_{dt}$$ \sim Uniform(160000, 300000)$$\tilde CPA_{pdt}$$ \sim Uniform(60000, 70000)$
    $\tilde de_{ict}$$ \sim Uniform(100, 200)$$\tilde td_{pclt}$$ \sim Uniform(16, 20)$
    $\tilde vp_{ipt}$$ \sim Uniform(120, 150)$$\tilde tc_{dclt}$$ \sim Uniform(2, 4)$
    $\tilde Hd_{idt}$$ \sim Uniform(10, 30)$$\tilde te_{pdlt}$$ \sim Uniform(10, 16)$
    $\tilde Hp_{ipt}$$ \sim Uniform(15, 40)$$\tilde dis1_{pcl}$$ \sim Uniform(200, 600)$
    $\tilde Tr1_{isplt}$$ \sim Uniform(80, 100)$$\tilde dis2_{dcl}$$ \sim Uniform(300, 500)$
    $\tilde Tr2_{ipdlt}$$ \sim Uniform(40, 60)$$\tilde dis3_{pdl}$$ \sim Uniform(100, 200)$
    $\tilde Tr3_{ipclt}$$ \sim Uniform(110, 200)$
     | Show Table
    DownLoad: CSV

    Table 9.  The Pareto optimal solution for different values of importance coefficients

    r1r2r3Problem No.Obj1Obj2Obj3CPU time (Sec)
    10013.69E+111.38E+080.00E+00134
    23.82E+121.26E+090.00E+00646
    01016.61E+122.44E+070.00E+00164
    22.50E+152.53E+080.00E+00655
    00116.61E+121.38E+087.46E+07132
    22.50E+151.26E+093.74E+11692
    0.450.450.113.39E+127.89E+071.42E+07210
    21.13E+156.58E+088.33E+10512
    0.350.350.313.99E+129.30E+072.76E+07167
    21.30E+157.29E+081.46E+11472
    0.250.250.514.55E+121.06E+084.70E+07173
    21.58E+159.41E+082.31E+11627
    0.150.150.715.50E+121.16E+085.67E+07159
    21.80E+159.91E+083.07E+11679
    0.050.050.916.20E+121.25E+087.02E+07134
    22.25E+151.13E+093.48E+11646
    0.20.30.515.20E+129.83E+074.78E+07164
    21.68E+158.90E+082.25E+11655
    0.20.50.314.93E+127.21E+072.76E+07132
    21.70E+156.48E+081.23E+11690
    0.30.20.514.38E+121.13E+084.63E+07210
    21.53E+159.81E+082.31E+11512
    0.30.50.214.24E+126.65E+071.72E+07167
    21.53E+156.38E+088.61E+10472
    0.50.20.313.12E+121.08E+082.84E+07173
    29.27E+149.84E+081.12E+11627
    0.50.30.212.93E+129.59E+071.79E+07159
    29.47E+148.90E+089.36E+10679
     | Show Table
    DownLoad: CSV

    Table 10.  The studies mentioning the agility indicators in the literature

    IndexRazmi et al. (2011)Yauch (2011)Ghodsypour and O'Brien (1998)Min and Shin (2008)Weber et al. (1991)Abratt and Kleyn (2012)Dickson (1996)Prater et al. (2001)Kassaee et al. (2014)Dahmardeh et al. (2010)Kumar et al. (2011)Aktepe et al. (1999)Lin (2009)Chan and Thong (2009)This study
    1**********
    2*********
    3*********
    4*********
    5****
    6*************
    7*********
    8****
    9*********
    10********
    11********
    12**********
    13*********
    14*********
    15************
    16**********
    17********
    18*********
    19*********
    20********
    21********
    22*********
    23*********
    24*********
    25***
    26*******
    27*******
    28****
    29*
    30************
    31************
    32********
    33********
    34********
    35
    36*********
    37************
    38*********
    39*************
     | Show Table
    DownLoad: CSV

    Table 11.  Agile suppliers attributes

    No.In1In2In3In4In5In6In7In8In9In10In11In12In13In14In15In16
    10.540.820.50.620.750.450.620.640.710.60.50.570.520.350.230.6
    20.50.040.630.630.950.460.60.760.40.770.50.60.80.530.380.47
    30.270.660.720.970.930.480.780.120.370.780.680.630.80.350.120.33
    40.430.340.710.750.920.560.720.440.530.680.640.680.720.370.320.3
    50.720.130.540.730.680.50.520.650.710.790.620.610.540.550.190.35
    60.710.450.810.520.90.520.550.020.310.720.70.650.70.340.10.34
    70.50.430.890.940.850.410.580.50.580.610.630.530.760.520.760.34
    80.340.770.740.550.740.420.70.060.80.760.40.630.790.440.240.49
    90.520.290.860.570.730.620.590.310.710.710.650.650.770.460.740.69
    100.390.580.650.760.670.660.620.40.210.610.420.60.520.560.940.36
    110.40.530.970.810.960.470.760.170.690.770.420.740.670.240.240.51
    120.580.070.750.540.650.60.530.10.860.720.630.740.70.30.060.55
    130.40.120.620.870.620.70.730.040.620.790.60.80.790.210.590.64
    140.340.810.870.860.630.670.520.940.20.730.490.520.770.50.220.32
    150.80.730.890.50.80.590.580.940.260.740.650.620.570.10.440.52
    160.620.270.570.891.000.440.70.670.20.620.440.560.590.410.860.65
    170.260.010.860.710.910.510.540.610.370.80.420.640.650.290.370.66
    180.330.630.960.930.610.650.730.230.440.710.70.640.540.520.170.63
    190.50.540.910.860.860.530.740.610.650.710.570.610.740.550.940.48
    210.330.890.680.620.810.590.510.380.510.750.510.770.790.410.860.35
    220.610.40.560.540.830.70.530.370.630.70.560.640.580.330.970.67
    230.680.840.980.90.880.440.690.030.60.740.430.590.720.140.250.61
    240.410.810.810.950.730.460.770.660.50.680.470.630.690.230.310.3
    250.270.440.630.550.940.690.720.180.280.740.610.710.580.210.000.59
    260.280.370.530.550.850.470.680.330.750.780.460.650.670.180.350.7
    270.640.790.630.70.890.450.570.150.690.770.660.710.650.250.550.52
    280.310.890.990.620.670.60.790.250.380.720.510.80.540.390.110.55
    290.60.020.760.730.640.70.50.670.530.640.420.790.620.450.990.36
    300.420.230.760.90.810.660.790.960.690.780.560.510.760.20.510.36
    310.80.480.80.510.830.430.660.840.30.780.480.580.690.480.120.31
    320.580.050.660.60.730.610.730.230.870.740.490.670.770.320.030.68
    330.570.210.860.710.640.540.780.450.550.740.680.770.560.310.990.41
    340.760.630.650.930.660.440.680.990.750.720.520.80.50.20.50.38
    350.280.040.710.670.720.430.570.440.720.710.450.50.750.410.290.47
    360.450.750.870.70.620.410.570.920.630.730.620.780.670.340.360.35
    370.730.10.750.980.730.550.560.340.750.690.620.520.730.230.610.57
    380.750.20.750.720.950.510.670.720.460.720.660.660.750.490.910.58
    390.80.980.520.860.860.680.50.310.690.650.630.640.760.170.270.43
    410.330.440.840.840.680.70.580.980.370.60.50.780.540.520.270.7
    420.660.970.590.70.780.590.770.720.440.680.670.710.660.160.340.54
    430.320.720.750.580.730.580.560.260.210.620.510.660.780.280.620.62
    440.520.170.560.990.760.650.770.590.460.730.670.670.50.410.870.56
    450.590.530.80.780.930.460.710.070.780.660.520.590.680.160.710.36
    460.460.010.770.770.990.50.710.760.90.780.590.60.790.480.460.54
    470.790.070.820.680.810.590.740.30.640.750.650.620.720.120.410.6
    480.410.180.640.590.790.460.730.890.760.640.620.540.580.530.220.41
    490.450.090.530.860.650.640.740.270.280.770.620.580.710.460.840.4
    500.40.490.910.620.880.580.750.390.350.710.650.780.640.130.390.44
    510.660.470.710.610.670.570.660.020.310.60.610.750.760.510.690.35
    520.620.420.810.540.930.540.520.110.220.690.680.790.620.350.550.69
    530.70.930.660.520.90.450.570.650.310.640.560.580.80.230.250.43
    540.250.910.820.990.630.650.580.880.360.760.460.780.640.520.170.62
    550.280.370.520.550.690.60.650.630.280.630.70.720.620.150.880.67
    560.640.421.001.000.910.690.710.110.890.770.510.620.560.420.210.63
    570.490.630.910.820.840.540.80.010.530.790.620.560.520.480.190.49
    580.490.970.560.70.60.660.580.260.820.80.420.610.770.460.590.56
    590.710.090.620.50.790.520.670.590.210.660.440.510.730.290.60.4
    600.270.060.970.680.980.590.580.250.20.690.40.750.680.540.720.49
     | Show Table
    DownLoad: CSV
  • [1] H. Abdi and L. J. Williams, Principal component analysis, Wiley Interdisciplinary Reviews: Computational Statistics, 2 (2010), 433-459.  doi: 10.1002/wics.101.
    [2] R. Abratt and N. Kleyn, Corporate identity, corporate branding and corporate reputations: Reconciliation and integration, European Journal of Marketing, 46 (2012), 1048-1063. 
    [3] I. M. Ambe, Agile supply chain: Strategy for competitive advantage, Journal of Global Strategic Management, 4 (2010), 5-17.  doi: 10.20460/JGSM.2010415835.
    [4] Y. Aït-Sahalia and D. Xiu, Principal component analysis of high frequency data, Journal of the American Statistical Association, 2017.
    [5] R. Babazadeh, J. Razmi and R. Ghodsi, Supply chain network design problem for a new market opportunity in an agile manufacturing system Journal of Industrial Engineering International, 8 (2012), 19pp. doi: 10.1186/2251-712X-8-19.
    [6] R. Babazadeh and J. Razmi, A robust stochastic programming approach for agile and responsive logistics under operational and disruption risks, International Journal of Logistics Systems and Management, 13 (2012), 458-482.  doi: 10.1504/IJLSM.2012.050158.
    [7] M. Bachlaus, M. K. Pandey, C. Mahajan, R. Shankar and M. K. Tiwari, Designing an integrated multi-echelon agile supply chain network: A hybrid taguchi-particle swarm optimization approach Journal of Intelligent Manufacturing, 9 (2008), p747. doi: 10.1007/s10845-008-0125-1.
    [8] B. W. Bolch and C. Huang, Multivariate Statistical Methods for Business and Economics, Prentice-Hall, 1973.
    [9] M. J. Braunscheidel and N. C. Suresh, The organizational antecedents of a firm's supply chain agility for risk mitigation and response, Journal of Operations Management, 27 (2009), 119-140.  doi: 10.1016/j.jom.2008.09.006.
    [10] T. A. Brown, Confirmatory Factor Analysis for Applied Research, Guilford Publications, 2014.
    [11] H. CarvalhoS. G. Azevedo and V. Cruz-Machado, Agile and resilient approaches to supply chain management: Influence on performance and competitiveness, Logistics Research, 4 (2012), 49-62.  doi: 10.1007/s12159-012-0064-2.
    [12] J. ChaiJ. N. Liu and E. W. Ngai, Application of decision-making techniques in supplier selection: A systematic review of literature, Expert Systems with Applications, 40 (2013), 3872-3885.  doi: 10.1016/j.eswa.2012.12.040.
    [13] A. T. ChanE. W. Ngai and K. K. Moon, The effects of strategic and manufacturing flexibilities and supply chain agility on firm performance in the fashion industry, European Journal of Operational Research, 259 (2017), 486-499.  doi: 10.1016/j.ejor.2016.11.006.
    [14] M. ChristopherR. Lowson and H. Peck, Creating agile supply chains in the fashion industry, International Journal of Retail & Distribution Management, 32 (2004), 367-376. 
    [15] M. Christopher, The agile supply chain: Competing in volatile markets, Industrial Marketing Management, 29 (2000), 37-44.  doi: 10.1016/S0019-8501(99)00110-8.
    [16] M. Christopher, A. Harrison and R. van Hoek, Creating the agile supply chain: Issues and challenges, in Developments in Logistics and Supply Chain Management, Springer, (2016), 61–68.
    [17] N. CostantinoM. DotoliM. FalagarioM. P. Fanti and A. M. Mangini, A model for supply management of agile manufacturing supply chains, International Journal of Production Economics, 135 (2012), 451-457.  doi: 10.1016/j.ijpe.2011.08.021.
    [18] L. De BoerE. Labro and P. Morlacchi, A review of methods supporting supplier selection, European Journal of Purchasing & Supply Management, 7 (2001), 75-89. 
    [19] G. W. Dickson, An analysis of vendor selection systems and decisions, European Journal of Marketing, 2 (1996), 5-17.  doi: 10.1111/j.1745-493X.1966.tb00818.x.
    [20] D. Dubois and H. Prade, The mean value of a fuzzy number, Fuzzy Sets and Systems, 24 (1987), 279-300.  doi: 10.1016/0165-0114(87)90028-5.
    [21] D. Dubois, E. Kerre, R. Mesiar and H. Prade, Fuzzy interval analysis, in Fundamentals of Fuzzy Sets, Springer, 2000, 483–558.
    [22] E. A. Elsayed, A. Shaik Dawood and R. Karthikeyan, Evaluating alternatives through the application of topsis method with entropy weight International Journal of Engineering Trends and Technology (IJETT), 46 (2017). doi: 10.14445/22315381/IJETT-V46P211.
    [23] H. Fargani, W. M. Cheung and R. Hasan, Ranking of factors that underlay the drivers of sustainable manufacturing based on their variation in a sample of UK manufacturing plants, International Journal of Manufacturing Technology and Management (IJMTM), (2017).
    [24] S. FayeziA. Zutshi and A. O'Loughlin, Understanding and development of supply chain agility and flexibility: A structured literature review, International Journal of Management Reviews, 19 (2017), 379-407.  doi: 10.1111/ijmr.12096.
    [25] M. Fazli-KhalafA. Mirzazadeh and M. S. Pishvaee, A robust fuzzy stochastic programming model for the design of a reliable green closed-loop supply chain network, Human and Ecological Risk Assessment: An International Journal, 23 (2017), 2119-2149.  doi: 10.1080/10807039.2017.1367644.
    [26] P. Fortemps and M. Roubens, Ranking and defuzzification methods based on area compensation, Fuzzy Sets and Systems, 82 (1996), 319-330.  doi: 10.1016/0165-0114(95)00273-1.
    [27] A. GangulyR. Nilchiani and J. V. Farr, Evaluating agility in corporate enterprises, International Journal of Production Economics, 118 (2009), 410-423.  doi: 10.1016/j.ijpe.2008.12.009.
    [28] S. H. Ghodsypour and C. O'Brien, A decision support system for supplier selection using an integrated analytic hierarchy process and linear programming, International Journal of Production Economics, 56/57 (1998), 199-212.  doi: 10.1016/S0925-5273(97)00009-1.
    [29] N. GholamianI. MahdaviR. Tavakkoli-Moghaddam and N. Mahdavi-Amiri, Comprehensive fuzzy multi-objective multi-product multi-site aggregate production planning decisions in a supply chain under uncertainty, Applied Soft Computing, 37 (2015), 585-607.  doi: 10.1016/j.asoc.2015.08.041.
    [30] D. M. Gligor and M. C. Holcomb, Understanding the role of logistics capabilities in achieving supply chain agility: A systematic literature review, Supply Chain Management: An International Journal, 17 (2012), 438-453.  doi: 10.1108/13598541211246594.
    [31] A. González, A study of the ranking function approach through mean values, Fuzzy Sets and Systems, 35 (1990), 29-41.  doi: 10.1016/0165-0114(90)90016-Y.
    [32] D. Harrington, Confirmatory Factor Analysis, Oxford University Press, 2009. doi: 10.1093/acprof:oso/9780195339888.001.0001.
    [33] M. A. HasanJ. Sarkis and R. Shankarr, Agility and production flow layouts: An analytical decision analysis, Computers & Industrial Engineering, 62 (2012), 898-907.  doi: 10.1016/j.cie.2011.12.011.
    [34] A. HasaniS. H. Zegordi and E. Nikbakhsh, Robust closed-loop supply chain network design for perishable goods in agile manufacturing under uncertainty, International Journal of Production Research, 50 (2012), 4649-4669.  doi: 10.1080/00207543.2011.625051.
    [35] S. Heilpern, The expected value of a fuzzy number, Fuzzy Sets and Systems, 47 (1992), 81-86.  doi: 10.1016/0165-0114(92)90062-9.
    [36] F. R. Jacobs, R. B. Chase and R. R. Lummus, Operations and Supply Chain Management, McGraw-Hill/Irwin New York, 2014.
    [37] M. JiménezM. ArenasA. Bilbao and M. V. Rodríguez, Linear programming with fuzzy parameters: An interactive method resolution, European Journal of Operational Research, 177 (2007), 1599-1609.  doi: 10.1016/j.ejor.2005.10.002.
    [38] M. Jiménez, Ranking fuzzy numbers through the comparison of its expected intervals, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 4 (1996), 379-388.  doi: 10.1142/S0218488596000226.
    [39] T. Jitpaiboon, The Roles of Information Systems Integration in the Supply Chain Integration Context-Firm Perspective, Ph. D thesis, University of Toledo, 2005.
    [40] I. T. Jolliffe and J. Cadima, Principal component analysis: A review and recent developments, Phil. Trans. R. Soc. A, 374 (2016), 20150202.
    [41] D. Kannan, Role of multiple stakeholders and the critical success factor theory for the sustainable supplier selection process, International Journal of Production Economics, 195 (2018), 391-418.  doi: 10.1016/j.ijpe.2017.02.020.
    [42] K. C. LamR. Tao and M. C. K. Lam, A material supplier selection model for property developers using fuzzy principal component analysis, Automation in Construction, 19 (2010), 608-618.  doi: 10.1016/j.autcon.2010.02.007.
    [43] T. Mak and F. Nebebe, Factor analysis and methods of supplier selection, International Journal of Supply Chain Management, 5 (2016), 1-9. 
    [44] A. W. Min and K. G. Shin, Exploiting multi-channel diversity in spectrum-agile networks, The 27th Conference on Computer Communications, IEEE, (2008), 1921–1929. doi: 10.1109/INFOCOM.2008.256.
    [45] K. Mukherjee, Modeling and optimization of traditional supplier selection, in Supplier Selection, Springer, 2017, 31–58. doi: 10.1007/978-81-322-3700-6_2.
    [46] D. J. Olive, Principal component analysis, in Robust Multivariate Analysis, Springer, 2017, 189–217. doi: 10.1007/978-3-319-68253-2_6.
    [47] F. Pan and R. Nagi, Robust supply chain design under uncertain demand in agile manufacturing, Computers & Industrial Engineering, 37 (2010), 668-683.  doi: 10.1016/j.cor.2009.06.017.
    [48] F. Pan and R. Nagi, Multi-echelon supply chain network design in agile manufacturing, Omega, 41 (2013), 969-983.  doi: 10.1016/j.omega.2012.12.004.
    [49] M. A. ParraA. B. TerolB. P. Gladish and M. V. R. Uría, Solving a multiobjective possibilistic problem through compromise programming, European Journal of Operational Research, 164 (2005), 748-759.  doi: 10.1016/j.ejor.2003.11.028.
    [50] D. PeidroJ. MulaM. Jiménez and M. del Mar Botella, A fuzzy linear programming based approach for tactical supply chain planning in an uncertainty environment, European Journal of Operational Research, 205 (2010), 65-80.  doi: 10.1016/j.ejor.2009.11.031.
    [51] A. Petroni and M. Braglia, Vendor selection using principal component analysis, Journal of Supply Chain Management, 36 (2000), 63-69.  doi: 10.1111/j.1745-493X.2000.tb00078.x.
    [52] M. S. Pishvaee and J. Razmi, Environmental supply chain network design using multi-objective fuzzy mathematical programming, Applied Mathematical Modelling, 36 (2012), 3433-3446.  doi: 10.1016/j.apm.2011.10.007.
    [53] M. S. Pishvaee and S. A. Torabi, A possibilistic programming approach for closed-loop supply chain network design under uncertainty, Fuzzy Sets and Systems, 161 (2010), 2668-2683.  doi: 10.1016/j.fss.2010.04.010.
    [54] L. L. Portes and L. A. Aguirre, Matrix formulation and singular-value decomposition algorithm for structured varimax rotation in multivariate singular spectrum analysis, Physical Review E, 93 (2016), 052216. doi: 10.1103/PhysRevE.93.052216.
    [55] J. RazmiM. Seifoory and M. S. Pishvaee, A fuzzy multi-attribute decision making model for selecting the best supply chain strategy: Lean, agile or leagile, Journal of Industrial Engineering, 45 (2011), 127-142. 
    [56] J. Razmi and A. Sabbaghnia, Tracing the impact of non-uniform forecasting methods on the severity of the bullwhip effect in two-and three-level supply chains, International Journal of Management Science and Engineering Management, 10 (2015), 297-304.  doi: 10.1080/17509653.2015.1016132.
    [57] P. RolaD. Kuchta and D. Kopczyk, Conceptual model of working space for agile (scrum) project team, Journal of Systems and Software, 118 (2016), 49-63.  doi: 10.1016/j.jss.2016.04.071.
    [58] C. Rolland-Debord, S. Fry, J. Giovannelli, C. Langlois, N. Bricout, B. Aguilaniu, A. Bellocq, O. Le Rouzic, S. Dominique, A. Delobbe and G. François, Physiologic determinants of exercise capacity in pulmonary langerhans cell histiocytosis: A multidimensional analysis, PloS one, 12 (2017), e0170035.
    [59] M. R. G. Samani, S. A. Torabi and S. M. Hosseini-Motlagh, Integrated blood supply chain planning for disaster relief, International Journal of Disaster Risk Reduction, (2017).
    [60] J. Sarkis and S. Talluri, A model for strategic supplier selection, Journal of Supply Chain Management, 38 (2002), 18-28.  doi: 10.1111/j.1745-493X.2002.tb00117.x.
    [61] M. R. ShaharudinK. GovindanS. ZailaniK. C. Tan and M. Iranmanesh, Product return management: Linking product returns, closed-loop supply chain activities and the effectiveness of the reverse supply chains, Journal of Cleaner Production, 149 (2017), 1144-1156.  doi: 10.1016/j.jclepro.2017.02.133.
    [62] T. P. Shri and N. Sriraam, Comparison of t-test ranking with PCA and SEPCOR feature selection for wake and stage 1 sleep pattern recognition in multichannel electroencephalograms, Biomedical Signal Processing and Control, 31 (2017), 499-512. 
    [63] Z. A. Sohi and S. A. Torabi, Integrated home video content procurement and distribution planning under uncertainty, Computers & Industrial Engineering, 106 (2017), 329-337. 
    [64] H. Stadtler, Supply chain management: An overview in Supply Chain Management and Advanced Planning, Springer, Berlin, Heidelberg, 2015, 3–28.
    [65] S. Subhash, Applied Multivariate Techniques, John Wily & Sons Inc., Canada, 1996.
    [66] R. Suri, QRM and POLCA: A winning combination for manufacturing enterprises in the 21st century, Citeseer, 32 (2003).
    [67] D. R. Towill, Engineering the agile supply chain, Logistics Systems Dynamics Group, (2001), 377-396.  doi: 10.1016/B978-008043567-1/50020-6.
    [68] C. A. Weber, J. R. Current and W. Bentonn, Vendor selection criteria and methods, European Journal of Operational Research, The 27th Conference on Computer Communications, 50 (1991), 2–18. doi: 10.1016/0377-2217(91)90033-R.
    [69] C. Wu and D. Barnes, Formulating partner selection criteria for agile supply chains: A Dempster-Shafer belief acceptability optimisation approach, International Journal of Production Economics, 125 (2010), 284-293.  doi: 10.1016/j.ijpe.2010.02.010.
    [70] R. R. Yager, A procedure for ordering fuzzy subsets of the unit interval, Information Sciences, 24 (1981), 143-161.  doi: 10.1016/0020-0255(81)90017-7.
    [71] C. A. Yauch, Measuring agility as a performance outcome, Journal of Manufacturing Technology Management, 22 (2011), 384-404.  doi: 10.1108/17410381111112738.
    [72] F. You and I. E. Grossmann, Design of responsive supply chains under demand uncertainty, Computers & Industrial Engineering, 32 (2008), 3090-3111.  doi: 10.1016/j.compchemeng.2008.05.004.
    [73] Y. Y. YusufA. GunasekaranE. Adeleye and K. Sivayoganathan, Agile supply chain capabilities: Determinants of competitive objectives, European Journal of Operational Research, 159 (2004), 379-392.  doi: 10.1016/j.ejor.2003.08.022.
  • 加载中

Figures(3)

Tables(11)

SHARE

Article Metrics

HTML views(7409) PDF downloads(1438) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return