-
Previous Article
A new relaxed CQ algorithm for solving split feasibility problems in Hilbert spaces and its applications
- JIMO Home
- This Issue
-
Next Article
Global error bounds for the tensor complementarity problem with a P-tensor
Predicting 72-hour reattendance in emergency departments using discriminant analysis via mixed integer programming with electronic medical records
1. | Department of Health Services and Outcomes Research, National Healthcare Group, 138543, Singapore |
2. | Department of Emergency Medicine, Tan Tock Seng Hospital, 308433, Singapore |
The proportion of patients who reattended emergency department (ED) within 72 hours is an important indicator of quality of care. This study develops a practical framework to predict patients who will reattend ED in 72 hours from clinical perspectives. We analyze 328,733 ED patients from 1 January 2011 to 31 December 2013, with an average of 4.6% reattendances. We feature over 100 factors including demographics, diagnosis, patient acuity, chief complaints, selected laboratory tests, summarized vital signs. Using univariate analysis, a pool of risk variables is selected for subsequent factor selection. We then apply filter methods to derive a set of candidate factors. With these factors in combination with suggestions from ED clinicians, a mixed integer programming model based on discriminant analysis is proposed to determine a classification rule for 72-hour reattendance. In numerical experiments, various small subsets of risk factors are used for classification and prediction. The results show that favorable predicting performances can be achieved in both training and test sets.
References:
[1] |
E. A. Alessandrini, J. M. Lavelle, S. M. Grenfell, C. R. Jacobstein and K. N. Shaw, Return visits to a pediatric emergency department, Pediatr. Emerg. Care, 20 (2004), 166-171. Google Scholar |
[2] |
J. A. Anderson,
Constrained discrimination between k populations, J. R. Stat. Soc. Series B, 31 (1969), 123-139.
|
[3] |
D. Aujesky, M. K. Mor, M. Geng, R. A. Stone, M. J. Fine and S. A. Ibrahim,
Predictors of early hospital readmission after acute pulmonary embolism, Arch. Intern. Med., 169 (2009), 287-293.
doi: 10.1001/archinternmed.2008.546. |
[4] |
K. P. Bennett and O. L. Mangasarian,
Robust linear programming discrimination of two linearly inseparable sets, Optim. Method Softw., 1 (1992), 23-34.
doi: 10.1080/10556789208805504. |
[5] |
R. T. Boonyasai, O. M. Ijagbemi and J. C. Pham et al, Improving the Emergency Department Discharge Process, Agency for Healthcare Research and Quality, Rockville, Maryland, United States. 2014. Google Scholar |
[6] |
G. Brown, A. Pocock, M.-J. Zhao and M. Luján,
Conditional likelihood maximisation: A unifying framework for information theoretic feature selection, J. Mach. Learn. Res., 13 (2012), 27-66.
|
[7] |
CDC, ICD-9-CM official guidelines for coding and reporting, http://www.cdc.gov/nchs/data/icd/icd9cm$_{-}$guidelines$_{-}$2011.pdf (accessed on 20 March 2016). Google Scholar |
[8] |
R. J. Gallagher, E. K. Lee and D. A. Patterson, Constrained discriminant analysis via 0/1 mixed integer programming, Ann. Oper. Res., 74 (1997), 65-88. Google Scholar |
[9] |
E. Goksu, C. Oktay, M. Kartal, A. Oskay and A. V. Sayrac,
Factors affecting revisit of COPD exacerbated patients presenting to emergency department, Eur. J. Emerg. Med., 17 (2010), 283-285.
doi: 10.1097/MEJ.0b013e3283314795. |
[10] |
C. Y. Han, L. C. Chen, A. Barnard, C. C. Lin, Y. C. Hsiao and H. E. Liu et al, Early revisit
to the emergency department: An integrative review, J. Emerg. Nurs., 41 (2015), 285-295
doi: 10.1016/j.jen.2014.11.013. |
[11] |
S. Hao, B. Jin and A. Y. Shin et al, Risk prediction of emergency department revisit 30 days
post discharge: A prospective study, PLoS One, 10 (2015), e0117633.
doi: 10.1371/journal.pone.0112944. |
[12] |
S. C. Hu, Analysis of patient revisits to the emergency department, Am. J. Emerg. Med., 10 (1992), 366-370. Google Scholar |
[13] |
I. Imsuwan, Characteristics of unscheduled emergency department return visit patients within 48 hours in Thammasat university hospital, J. Med. Assoc. Thai., 94 (2011), S73-S80. Google Scholar |
[14] |
Y. Jenab, S. Haghani, A. Jalali and F. Darabi,
Unscheduled return visits and leaving the chest pain unit against medical advice, Iran Red Crescent Med. J., 17 (2015), e18320.
doi: 10.5812/ircmj.17(5)2015.18320. |
[15] |
K. D. Keith, J. J. Bocka, M. S. Kobernick, R. L. Krome and M. A. Ross,
Emergency department revisits, Ann. Emerg. Med., 18 (1989), 964-968.
doi: 10.1016/S0196-0644(89)80461-5. |
[16] |
M. Ko, Y. Lee, C. Chen, P. Chou and D. Chu,
Incidence of and predictors for early return visits to the emergency department: a population-based survey, Medicine, 94 (2015), e1770.
doi: 10.1097/MD.0000000000001770. |
[17] |
E. K. Lee, Y. Wang, M. S. Hagen, X. Wei, R. A. Davis and B. M. Egan, Machine learning:
Multi-site evidence-based best practice discovery, in Machine Learning, Optimization, and
Big Data. MOD 2016. Lecture Notes in Computer Science (eds. P. Pardalos, P. Conca, G.
Giuffrida and G. Nicosia), Springer, Cham, (2016), 1-15.
doi: 10.1007/978-3-319-51469-7_1. |
[18] |
E. K. Lee,
Large-scale optimization-based classification models in medicine and biology, Ann. Biomed. Eng., 35 (2007), 1095-1109.
doi: 10.1007/s10439-007-9317-7. |
[19] |
E. K. Lee, F. Yuan, D. Hirsh, M. Mallory and H. K. Simon, A clinical decision tool for predicting patient care characteristics: patients returning within 72 hours in the emergency department, AMIA Annu. Symp. Proc., (2012), 495-504. Google Scholar |
[20] |
E. K. Lee, R. J. Gallagher and D. A. patterson,
A linear programming approach to discriminant analysis with a reserved-judgment region, INFORMS J. Comput., 15 (2003), 23-41.
doi: 10.1287/ijoc.15.1.23.15158. |
[21] |
S. J. Liaw, M. J. Bullard, P. M. Hu, J. C. Chen and H. C. Liao, Rates and causes of emergency department revisits within 72 hours, J. Formos Med. Assoc., 98 (1999), 422-425. Google Scholar |
[22] |
J. A. Lowthian, A. J. Curtis and P. A. Cameron et al,
Systematic review of trends in emergency department attendances: an Australian perspective, Emerg. Med. J., 28 (2011), 373-377.
doi: 10.1136/emj.2010.099226. |
[23] |
F. Meng, C. K. Ooi, C. K. K. Soh, K. L. Teow and P. Kannapiran,
Quantifying patient flow and utilization with patient flow pathway and diagnosis of an emergency in Singapore, Health Syst., 5 (2016), 140-148.
doi: 10.1057/hs.2015.15. |
[24] |
F. Meng, J. Qi, M. Zhang, J. Ang, S. Chu and M. Siim,
A robust optimization model for managing elective admission in a public hospital, Oper. Res., 63 (2015), 1452-1467.
doi: 10.1287/opre.2015.1423. |
[25] |
A. S. Newton, S. Ali, D. W. Johnson, C. Haines, R. J. Rosychuk, R. A. Keaschuk, P. Jacobs, M. Cappelli and T. P. Klassen,
Who comes back? Characteristics and predictors of return to emergency department services for pediatric mental health care, Acad. Emerg. Med., 17 (2010), 177-186.
doi: 10.1111/j.1553-2712.2009.00633.x. |
[26] |
Y. Y. Ng, Optimal use of emegency services, SFP, 40 (2014), supplement 8-13. Google Scholar |
[27] |
S. Nunëz, A. Hexdall and A. Aguirre-Jaime, Unscheduled returns to the emergency department: An outcome of medical errors?, Qual. Saf. Health Care., 15 (2006), 102-108. Google Scholar |
[28] |
K. O'Loughlin, K. A. Hacking, N. Simmons, W. Christian, R. Syahanee, A. Shamekh and N. J. Prince, Paediatric unplanned reattendance rate: A&E clinical quality indicators, Arch. Dis. Child., 98 (2013), 211-213. Google Scholar |
[29] |
L. Pereira, C. Choquet and A. Perozziello et al, Unscheduled return visits after an emergency
department (ED) attendance and clinical link between both visits in patients aged 75 years
and over: a prospective observational study, PloS One, 10 (2015), e0123803.
doi: 10.1371/journal.pone.0123803. |
[30] |
H. Qiu, X. Chen, W. Liu, G. Zhou, Y. Wang and J. Lai,
A fast11-solver and its applications to robust face recognition, J. Ind. Manag. Optim., 8 (2012), 163-178.
|
[31] |
J. Ryan, J. Hendler and K. P. Bennett,
Understanding emergency department 72-hour revisits among medicaid patients using electronic healthcare records, Big Data, 3 (2015), 238-248.
doi: 10.1089/big.2015.0038. |
[32] |
Y. Saeys, I. Inza and P. Larrañaga, A review of feature selection techniques in bioinformatics, 23 (2007), 2507-2517.
doi: 10.1093/bioinformatics/btm344. |
[33] |
G. Sauvin, Y. Freund, K. Saidi, B. Riou and P. Hausfater,
Unscheduled return visits to the emergency department: Consequences for triage, Acad. Emerg. Med., 20 (2013), 33-39.
doi: 10.1111/acem.12052. |
[34] |
Y. Sun, B. H. Heng, S. Y. Tay and K. B. Tan,
Unplanned 3-day re-attendance rate at Emergency Department and hospital's bed occupancy rate, Int. J. Emerg. Med., 8 (2015), 324-329.
doi: 10.1186/s12245-015-0082-3. |
[35] |
C. R. Trivedy and M. W. Cooke,
Unscheduled-return-visits (URV) in adults to the emergency department (ED): A rapid evidence assessment policy review, Emerg. Med. J., 32 (2015), 324-329.
doi: 10.1136/emermed-2013-202719. |
[36] |
S. J. J. Verelst, S. Pierloot, D. Desruelles, J.-B. Gillet and J. Bergs,
Short-term unscheduled return visits of adult patients to the emergency department, J. Emerg. Med., 47 (2014), 131-199.
doi: 10.1016/j.jemermed.2014.01.016. |
[37] |
A. K. C. Wai, C. M. Chor, A. T. C. Lee, Y. Sittambunka, C. A. Graham and T. H. Rainer,
Analysis of trends in emergency department attendances, hospital admissions and medical staffing in a Hong Kong university hospital: 5-year study, Int J. Emerg. Med., 2 (2009), 141-148.
doi: 10.1007/s12245-009-0098-7. |
[38] |
Y. Wang, G. Zhou, L. Caccetta and W. Liu,
An alternative Lagrange-dual based algorithm for sparse signal reconstruction, IEEE Trans. Sig. Process., 59 (2011), 1895-1901.
doi: 10.1109/TSP.2010.2103066. |
[39] |
C. Wei and X. Tang,
A fuzzy group decision making approach based on entropy, similarity measure, Int. J. Inf. Technol. Decis. Mak., 10 (2011), 1111-1130.
doi: 10.1142/S0219622011004737. |
[40] |
C. L. Wu, F. T. Wang, Y. C. Chiang, Y. F. Chiu, T. G. Lin and L. F. Fu et al,
Unplanned emergency department revisits within 72 hours to a secondary teaching referral hospital in Taiwan, J. Emerg. Med., 38 (2010), 512-517.
doi: 10.1016/j.jemermed.2008.03.039. |
show all references
References:
[1] |
E. A. Alessandrini, J. M. Lavelle, S. M. Grenfell, C. R. Jacobstein and K. N. Shaw, Return visits to a pediatric emergency department, Pediatr. Emerg. Care, 20 (2004), 166-171. Google Scholar |
[2] |
J. A. Anderson,
Constrained discrimination between k populations, J. R. Stat. Soc. Series B, 31 (1969), 123-139.
|
[3] |
D. Aujesky, M. K. Mor, M. Geng, R. A. Stone, M. J. Fine and S. A. Ibrahim,
Predictors of early hospital readmission after acute pulmonary embolism, Arch. Intern. Med., 169 (2009), 287-293.
doi: 10.1001/archinternmed.2008.546. |
[4] |
K. P. Bennett and O. L. Mangasarian,
Robust linear programming discrimination of two linearly inseparable sets, Optim. Method Softw., 1 (1992), 23-34.
doi: 10.1080/10556789208805504. |
[5] |
R. T. Boonyasai, O. M. Ijagbemi and J. C. Pham et al, Improving the Emergency Department Discharge Process, Agency for Healthcare Research and Quality, Rockville, Maryland, United States. 2014. Google Scholar |
[6] |
G. Brown, A. Pocock, M.-J. Zhao and M. Luján,
Conditional likelihood maximisation: A unifying framework for information theoretic feature selection, J. Mach. Learn. Res., 13 (2012), 27-66.
|
[7] |
CDC, ICD-9-CM official guidelines for coding and reporting, http://www.cdc.gov/nchs/data/icd/icd9cm$_{-}$guidelines$_{-}$2011.pdf (accessed on 20 March 2016). Google Scholar |
[8] |
R. J. Gallagher, E. K. Lee and D. A. Patterson, Constrained discriminant analysis via 0/1 mixed integer programming, Ann. Oper. Res., 74 (1997), 65-88. Google Scholar |
[9] |
E. Goksu, C. Oktay, M. Kartal, A. Oskay and A. V. Sayrac,
Factors affecting revisit of COPD exacerbated patients presenting to emergency department, Eur. J. Emerg. Med., 17 (2010), 283-285.
doi: 10.1097/MEJ.0b013e3283314795. |
[10] |
C. Y. Han, L. C. Chen, A. Barnard, C. C. Lin, Y. C. Hsiao and H. E. Liu et al, Early revisit
to the emergency department: An integrative review, J. Emerg. Nurs., 41 (2015), 285-295
doi: 10.1016/j.jen.2014.11.013. |
[11] |
S. Hao, B. Jin and A. Y. Shin et al, Risk prediction of emergency department revisit 30 days
post discharge: A prospective study, PLoS One, 10 (2015), e0117633.
doi: 10.1371/journal.pone.0112944. |
[12] |
S. C. Hu, Analysis of patient revisits to the emergency department, Am. J. Emerg. Med., 10 (1992), 366-370. Google Scholar |
[13] |
I. Imsuwan, Characteristics of unscheduled emergency department return visit patients within 48 hours in Thammasat university hospital, J. Med. Assoc. Thai., 94 (2011), S73-S80. Google Scholar |
[14] |
Y. Jenab, S. Haghani, A. Jalali and F. Darabi,
Unscheduled return visits and leaving the chest pain unit against medical advice, Iran Red Crescent Med. J., 17 (2015), e18320.
doi: 10.5812/ircmj.17(5)2015.18320. |
[15] |
K. D. Keith, J. J. Bocka, M. S. Kobernick, R. L. Krome and M. A. Ross,
Emergency department revisits, Ann. Emerg. Med., 18 (1989), 964-968.
doi: 10.1016/S0196-0644(89)80461-5. |
[16] |
M. Ko, Y. Lee, C. Chen, P. Chou and D. Chu,
Incidence of and predictors for early return visits to the emergency department: a population-based survey, Medicine, 94 (2015), e1770.
doi: 10.1097/MD.0000000000001770. |
[17] |
E. K. Lee, Y. Wang, M. S. Hagen, X. Wei, R. A. Davis and B. M. Egan, Machine learning:
Multi-site evidence-based best practice discovery, in Machine Learning, Optimization, and
Big Data. MOD 2016. Lecture Notes in Computer Science (eds. P. Pardalos, P. Conca, G.
Giuffrida and G. Nicosia), Springer, Cham, (2016), 1-15.
doi: 10.1007/978-3-319-51469-7_1. |
[18] |
E. K. Lee,
Large-scale optimization-based classification models in medicine and biology, Ann. Biomed. Eng., 35 (2007), 1095-1109.
doi: 10.1007/s10439-007-9317-7. |
[19] |
E. K. Lee, F. Yuan, D. Hirsh, M. Mallory and H. K. Simon, A clinical decision tool for predicting patient care characteristics: patients returning within 72 hours in the emergency department, AMIA Annu. Symp. Proc., (2012), 495-504. Google Scholar |
[20] |
E. K. Lee, R. J. Gallagher and D. A. patterson,
A linear programming approach to discriminant analysis with a reserved-judgment region, INFORMS J. Comput., 15 (2003), 23-41.
doi: 10.1287/ijoc.15.1.23.15158. |
[21] |
S. J. Liaw, M. J. Bullard, P. M. Hu, J. C. Chen and H. C. Liao, Rates and causes of emergency department revisits within 72 hours, J. Formos Med. Assoc., 98 (1999), 422-425. Google Scholar |
[22] |
J. A. Lowthian, A. J. Curtis and P. A. Cameron et al,
Systematic review of trends in emergency department attendances: an Australian perspective, Emerg. Med. J., 28 (2011), 373-377.
doi: 10.1136/emj.2010.099226. |
[23] |
F. Meng, C. K. Ooi, C. K. K. Soh, K. L. Teow and P. Kannapiran,
Quantifying patient flow and utilization with patient flow pathway and diagnosis of an emergency in Singapore, Health Syst., 5 (2016), 140-148.
doi: 10.1057/hs.2015.15. |
[24] |
F. Meng, J. Qi, M. Zhang, J. Ang, S. Chu and M. Siim,
A robust optimization model for managing elective admission in a public hospital, Oper. Res., 63 (2015), 1452-1467.
doi: 10.1287/opre.2015.1423. |
[25] |
A. S. Newton, S. Ali, D. W. Johnson, C. Haines, R. J. Rosychuk, R. A. Keaschuk, P. Jacobs, M. Cappelli and T. P. Klassen,
Who comes back? Characteristics and predictors of return to emergency department services for pediatric mental health care, Acad. Emerg. Med., 17 (2010), 177-186.
doi: 10.1111/j.1553-2712.2009.00633.x. |
[26] |
Y. Y. Ng, Optimal use of emegency services, SFP, 40 (2014), supplement 8-13. Google Scholar |
[27] |
S. Nunëz, A. Hexdall and A. Aguirre-Jaime, Unscheduled returns to the emergency department: An outcome of medical errors?, Qual. Saf. Health Care., 15 (2006), 102-108. Google Scholar |
[28] |
K. O'Loughlin, K. A. Hacking, N. Simmons, W. Christian, R. Syahanee, A. Shamekh and N. J. Prince, Paediatric unplanned reattendance rate: A&E clinical quality indicators, Arch. Dis. Child., 98 (2013), 211-213. Google Scholar |
[29] |
L. Pereira, C. Choquet and A. Perozziello et al, Unscheduled return visits after an emergency
department (ED) attendance and clinical link between both visits in patients aged 75 years
and over: a prospective observational study, PloS One, 10 (2015), e0123803.
doi: 10.1371/journal.pone.0123803. |
[30] |
H. Qiu, X. Chen, W. Liu, G. Zhou, Y. Wang and J. Lai,
A fast11-solver and its applications to robust face recognition, J. Ind. Manag. Optim., 8 (2012), 163-178.
|
[31] |
J. Ryan, J. Hendler and K. P. Bennett,
Understanding emergency department 72-hour revisits among medicaid patients using electronic healthcare records, Big Data, 3 (2015), 238-248.
doi: 10.1089/big.2015.0038. |
[32] |
Y. Saeys, I. Inza and P. Larrañaga, A review of feature selection techniques in bioinformatics, 23 (2007), 2507-2517.
doi: 10.1093/bioinformatics/btm344. |
[33] |
G. Sauvin, Y. Freund, K. Saidi, B. Riou and P. Hausfater,
Unscheduled return visits to the emergency department: Consequences for triage, Acad. Emerg. Med., 20 (2013), 33-39.
doi: 10.1111/acem.12052. |
[34] |
Y. Sun, B. H. Heng, S. Y. Tay and K. B. Tan,
Unplanned 3-day re-attendance rate at Emergency Department and hospital's bed occupancy rate, Int. J. Emerg. Med., 8 (2015), 324-329.
doi: 10.1186/s12245-015-0082-3. |
[35] |
C. R. Trivedy and M. W. Cooke,
Unscheduled-return-visits (URV) in adults to the emergency department (ED): A rapid evidence assessment policy review, Emerg. Med. J., 32 (2015), 324-329.
doi: 10.1136/emermed-2013-202719. |
[36] |
S. J. J. Verelst, S. Pierloot, D. Desruelles, J.-B. Gillet and J. Bergs,
Short-term unscheduled return visits of adult patients to the emergency department, J. Emerg. Med., 47 (2014), 131-199.
doi: 10.1016/j.jemermed.2014.01.016. |
[37] |
A. K. C. Wai, C. M. Chor, A. T. C. Lee, Y. Sittambunka, C. A. Graham and T. H. Rainer,
Analysis of trends in emergency department attendances, hospital admissions and medical staffing in a Hong Kong university hospital: 5-year study, Int J. Emerg. Med., 2 (2009), 141-148.
doi: 10.1007/s12245-009-0098-7. |
[38] |
Y. Wang, G. Zhou, L. Caccetta and W. Liu,
An alternative Lagrange-dual based algorithm for sparse signal reconstruction, IEEE Trans. Sig. Process., 59 (2011), 1895-1901.
doi: 10.1109/TSP.2010.2103066. |
[39] |
C. Wei and X. Tang,
A fuzzy group decision making approach based on entropy, similarity measure, Int. J. Inf. Technol. Decis. Mak., 10 (2011), 1111-1130.
doi: 10.1142/S0219622011004737. |
[40] |
C. L. Wu, F. T. Wang, Y. C. Chiang, Y. F. Chiu, T. G. Lin and L. F. Fu et al,
Unplanned emergency department revisits within 72 hours to a secondary teaching referral hospital in Taiwan, J. Emerg. Med., 38 (2010), 512-517.
doi: 10.1016/j.jemermed.2008.03.039. |
Index | Factor Name |
1 | Age |
2 | Gender |
3 | Race |
4 | Registration day of week (DOW) |
5 | Registration public holiday and Sunday (HAS) |
6 | CC1 orthopaedic (ORTHO) |
7 | CC1 gastrointestinal (GI) |
8 | CC1 respiratory (RES) |
9 | CC1 general & minor |
10 | CC1 external causes of morbidity |
11 | CC1 neurologic |
12 | CC1 cardiovascular (CV) |
13 | CC1 skin |
14 | CC1 eye complaints (EC) |
15 | CC1 ear, neck, throat |
16 | CC1 substance misuse (SM) |
17 | CC1 others |
18 | EDTC2 category |
19 | Diagnosis: general symptoms (GM) |
20 | Diagnosis: acute respiratory infection (ARI) |
21 | Diagnosis: sprains and strains (SS) |
22 | Diagnosis: minor head injury (MHI) |
23 | Diagnosis: diseases of oesophagus, stomach, duodenum |
24 | Diagnosis: COPD3 |
25 | Diagnosis: fracture upper limb (FUL) |
26 | Diagnosis: fracture lower limb (FLL) |
27 | Diagnosis: open wound upper limb (OWUL) |
28 | Diagnosis: superficial injuries (SIN) |
29 | Diagnosis: intestinal diseases (ID) |
30 | Diagnosis: rheumatism (RHE) |
31 | Diagnosis: diseases of ear and mastoid (DEM) |
32 | Diagnosis: open wound of head, neck, and trunk (OW of HNT) |
33 | Diagnosis: neurotic disorders (ND) |
34 | Diagnosis: viral diseases (VD) |
35 | Diagnosis: complications of care (COMC) |
36 | Diagnosis: open wound lower limb (OWLL) |
37 | Diagnosis: others in ICD-9-CM4 groups |
38 | PAC5 status |
39 | Social issues (SI) |
40 | National service full-time (NSTF) |
41 | Handover |
42 | Medical history diabetes |
43 | Medical history asthma |
44 | Medical history cardiovascular disease |
45 | Average temperature (ave temp.) |
46 | Average pulse |
47 | Diastolic blood pressure (DBP) |
1 CC stands for chief complaint 2 EDTC stands for emergency diagnostic and therapeutic centre. Certain emergency patients are observed at EDTC for up to 24 hours before being admitted or discharged 3 COPD stands for chronic obstructive pulmonary disease 4 ICD-9-CM stands for international classification of diseases, 9th revision, clinical modification 5 PAC stands for patient acuity category |
Index | Factor Name |
1 | Age |
2 | Gender |
3 | Race |
4 | Registration day of week (DOW) |
5 | Registration public holiday and Sunday (HAS) |
6 | CC1 orthopaedic (ORTHO) |
7 | CC1 gastrointestinal (GI) |
8 | CC1 respiratory (RES) |
9 | CC1 general & minor |
10 | CC1 external causes of morbidity |
11 | CC1 neurologic |
12 | CC1 cardiovascular (CV) |
13 | CC1 skin |
14 | CC1 eye complaints (EC) |
15 | CC1 ear, neck, throat |
16 | CC1 substance misuse (SM) |
17 | CC1 others |
18 | EDTC2 category |
19 | Diagnosis: general symptoms (GM) |
20 | Diagnosis: acute respiratory infection (ARI) |
21 | Diagnosis: sprains and strains (SS) |
22 | Diagnosis: minor head injury (MHI) |
23 | Diagnosis: diseases of oesophagus, stomach, duodenum |
24 | Diagnosis: COPD3 |
25 | Diagnosis: fracture upper limb (FUL) |
26 | Diagnosis: fracture lower limb (FLL) |
27 | Diagnosis: open wound upper limb (OWUL) |
28 | Diagnosis: superficial injuries (SIN) |
29 | Diagnosis: intestinal diseases (ID) |
30 | Diagnosis: rheumatism (RHE) |
31 | Diagnosis: diseases of ear and mastoid (DEM) |
32 | Diagnosis: open wound of head, neck, and trunk (OW of HNT) |
33 | Diagnosis: neurotic disorders (ND) |
34 | Diagnosis: viral diseases (VD) |
35 | Diagnosis: complications of care (COMC) |
36 | Diagnosis: open wound lower limb (OWLL) |
37 | Diagnosis: others in ICD-9-CM4 groups |
38 | PAC5 status |
39 | Social issues (SI) |
40 | National service full-time (NSTF) |
41 | Handover |
42 | Medical history diabetes |
43 | Medical history asthma |
44 | Medical history cardiovascular disease |
45 | Average temperature (ave temp.) |
46 | Average pulse |
47 | Diastolic blood pressure (DBP) |
1 CC stands for chief complaint 2 EDTC stands for emergency diagnostic and therapeutic centre. Certain emergency patients are observed at EDTC for up to 24 hours before being admitted or discharged 3 COPD stands for chronic obstructive pulmonary disease 4 ICD-9-CM stands for international classification of diseases, 9th revision, clinical modification 5 PAC stands for patient acuity category |
JMI | MIFS | CMIM | MRMR | ICAP | CIFE | DISR | CMI | ConDred |
SI | SI | SI | SI | SI | SI | SI | SI | SI |
PAC | PAC | PAC | PAC | PAC | PAC | diag: COPD | PAC | PAC |
DBP | diag:ID | DBP | diag:ID | DBP | ave pulse | CC stance | ave SM | DBP |
ave pulse | reg HAS | ave pulse | reg HAS | ave pulse | DBP | diag:ND | DBP | EDTC |
diag:COPD | diag:COMC | diag:COPD | diag:OWLL | diag:COPD | age | diag:OWLL | reg DOW | CC others |
age | diag:OWLL | age | diag:OW of HNT | age | reg DOW | handover | age | diag:MHI |
CC RES | diag:OW of HNT | handover | diag:COMC | gender | race | CC RES | race | age |
gender | diag:VD | gender | diag:ND | handover | diag:COPD | diag:OWUL | ave temp. | NSFT |
ave temp. | diag:DEM | ave temp. | diag:DEM | ave temp. | ave temp. | diag:FLL | gender | ave pulse |
handover | CC SM | CC RES | ave temp. | CC GI | gender | diag:OW of HNT | CC ORTHO | CC ORTHO |
race | diag:RHE | CC EC | diag:FLL | race | CC RES | PAC | diag:GM | diag:GM |
EDTC | diag:SIN | CC ORTHO | diag:RHE | NSFT | handover | EDTC | diag:others in ICD9 | CC CV |
NSFT | diag:FLL | race | diag:OWUL | reg DOW | NSFT | diag:DEM | CC RES | diag:ARI |
CC ORTHO | diag:FUL | NSFT | diag:SIN | diag:ND | diag:GM | diag:ID | CC GI | CC RES |
reg DOW | diag:OWUL | diag:ND | gender | diag:GM | medical history asthma | CC EC | NSFT | diag:SS |
JMI | MIFS | CMIM | MRMR | ICAP | CIFE | DISR | CMI | ConDred |
SI | SI | SI | SI | SI | SI | SI | SI | SI |
PAC | PAC | PAC | PAC | PAC | PAC | diag: COPD | PAC | PAC |
DBP | diag:ID | DBP | diag:ID | DBP | ave pulse | CC stance | ave SM | DBP |
ave pulse | reg HAS | ave pulse | reg HAS | ave pulse | DBP | diag:ND | DBP | EDTC |
diag:COPD | diag:COMC | diag:COPD | diag:OWLL | diag:COPD | age | diag:OWLL | reg DOW | CC others |
age | diag:OWLL | age | diag:OW of HNT | age | reg DOW | handover | age | diag:MHI |
CC RES | diag:OW of HNT | handover | diag:COMC | gender | race | CC RES | race | age |
gender | diag:VD | gender | diag:ND | handover | diag:COPD | diag:OWUL | ave temp. | NSFT |
ave temp. | diag:DEM | ave temp. | diag:DEM | ave temp. | ave temp. | diag:FLL | gender | ave pulse |
handover | CC SM | CC RES | ave temp. | CC GI | gender | diag:OW of HNT | CC ORTHO | CC ORTHO |
race | diag:RHE | CC EC | diag:FLL | race | CC RES | PAC | diag:GM | diag:GM |
EDTC | diag:SIN | CC ORTHO | diag:RHE | NSFT | handover | EDTC | diag:others in ICD9 | CC CV |
NSFT | diag:FLL | race | diag:OWUL | reg DOW | NSFT | diag:DEM | CC RES | diag:ARI |
CC ORTHO | diag:FUL | NSFT | diag:SIN | diag:ND | diag:GM | diag:ID | CC GI | CC RES |
reg DOW | diag:OWUL | diag:ND | gender | diag:GM | medical history asthma | CC EC | NSFT | diag:SS |
Set of risk factors | Training set | Test set | ||||
sensitivity | specificity | overall | sensitivity | specificity | overall | |
S0 | 29.4% | 86.2% | 83.5% | 29.3% | 85.8% | 83.3% |
Set of risk factors | Training set | Test set | ||||
sensitivity | specificity | overall | sensitivity | specificity | overall | |
S0 | 29.4% | 86.2% | 83.5% | 29.3% | 85.8% | 83.3% |
Set of risk factors | Training set | Test set | ||||
sensitivity | specificity | overall | sensitivity | specificity | overall | |
S1 | 41.1% | 74.2% | 72.5% | 40.3% | 74.1% | 72.4% |
S2 | 40.6% | 74.5% | 72.8% | 40.1% | 74.1% | 72.6% |
S3 | 40.6% | 74.4% | 72.7% | 40.1% | 74.2% | 72.7% |
S4 | 40.3% | 74.4% | 72.8% | 39.9% | 74.4% | 72.8% |
Set of risk factors | Training set | Test set | ||||
sensitivity | specificity | overall | sensitivity | specificity | overall | |
S1 | 41.1% | 74.2% | 72.5% | 40.3% | 74.1% | 72.4% |
S2 | 40.6% | 74.5% | 72.8% | 40.1% | 74.1% | 72.6% |
S3 | 40.6% | 74.4% | 72.7% | 40.1% | 74.2% | 72.7% |
S4 | 40.3% | 74.4% | 72.8% | 39.9% | 74.4% | 72.8% |
Training set: 211,160 | Test set: 117,573 | |||||
Hosmer-Lemeshow test | p < 0.001 | p < 0.001 | ||||
C-statistic of ROC curve | 0.67 | 0.66 | ||||
Predictive accuracy | sensitivity | specificity | overall | sensitivity | specificity | overall |
70% cutoff | 1.7% | 99.9% | 95.4% | 1.0% | 99.9% | 95.5% |
50% cutoff | 4.6% | 99.9% | 95.5% | 2.4% | 99.9% | 95.5% |
20% cutoff | 11.9% | 99.3% | 95.2% | 7.2% | 99.4% | 95.2% |
10% cutoff | 18.5% | 96.3% | 92.7% | 14.1% | 96.1% | 92.4% |
5% cutoff | 51.6% | 72.2% | 71.2% | 51.0% | 70.8% | 69.9% |
Training set: 211,160 | Test set: 117,573 | |||||
Hosmer-Lemeshow test | p < 0.001 | p < 0.001 | ||||
C-statistic of ROC curve | 0.67 | 0.66 | ||||
Predictive accuracy | sensitivity | specificity | overall | sensitivity | specificity | overall |
70% cutoff | 1.7% | 99.9% | 95.4% | 1.0% | 99.9% | 95.5% |
50% cutoff | 4.6% | 99.9% | 95.5% | 2.4% | 99.9% | 95.5% |
20% cutoff | 11.9% | 99.3% | 95.2% | 7.2% | 99.4% | 95.2% |
10% cutoff | 18.5% | 96.3% | 92.7% | 14.1% | 96.1% | 92.4% |
5% cutoff | 51.6% | 72.2% | 71.2% | 51.0% | 70.8% | 69.9% |
[1] |
Sohana Jahan. Discriminant analysis of regularized multidimensional scaling. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 255-267. doi: 10.3934/naco.2020024 |
[2] |
Qing Liu, Bingo Wing-Kuen Ling, Qingyun Dai, Qing Miao, Caixia Liu. Optimal maximally decimated M-channel mirrored paraunitary linear phase FIR filter bank design via norm relaxed sequential quadratic programming. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1993-2011. doi: 10.3934/jimo.2020055 |
[3] |
Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137 |
[4] |
Jinye Shen, Xian-Ming Gu. Two finite difference methods based on an H2N2 interpolation for two-dimensional time fractional mixed diffusion and diffusion-wave equations. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021086 |
[5] |
Hsin-Lun Li. Mixed Hegselmann-Krause dynamics. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021084 |
[6] |
Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023 |
[7] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
[8] |
Mohammed Abdelghany, Amr B. Eltawil, Zakaria Yahia, Kazuhide Nakata. A hybrid variable neighbourhood search and dynamic programming approach for the nurse rostering problem. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2051-2072. doi: 10.3934/jimo.2020058 |
[9] |
Sandrine Anthoine, Jean-François Aujol, Yannick Boursier, Clothilde Mélot. Some proximal methods for Poisson intensity CBCT and PET. Inverse Problems & Imaging, 2012, 6 (4) : 565-598. doi: 10.3934/ipi.2012.6.565 |
[10] |
Takeshi Saito, Kazuyuki Yagasaki. Chebyshev spectral methods for computing center manifolds. Journal of Computational Dynamics, 2021 doi: 10.3934/jcd.2021008 |
[11] |
Demetres D. Kouvatsos, Jumma S. Alanazi, Kevin Smith. A unified ME algorithm for arbitrary open QNMs with mixed blocking mechanisms. Numerical Algebra, Control & Optimization, 2011, 1 (4) : 781-816. doi: 10.3934/naco.2011.1.781 |
[12] |
Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems & Imaging, 2021, 15 (3) : 539-554. doi: 10.3934/ipi.2021004 |
[13] |
Tianyu Liao. The regularity lifting methods for nonnegative solutions of Lane-Emden system. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021036 |
[14] |
Abdeslem Hafid Bentbib, Smahane El-Halouy, El Mostafa Sadek. Extended Krylov subspace methods for solving Sylvester and Stein tensor equations. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021026 |
[15] |
Siting Liu, Levon Nurbekyan. Splitting methods for a class of non-potential mean field games. Journal of Dynamics & Games, 2021 doi: 10.3934/jdg.2021014 |
[16] |
Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225 |
[17] |
Vladimir Gaitsgory, Ilya Shvartsman. Linear programming estimates for Cesàro and Abel limits of optimal values in optimal control problems. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021102 |
[18] |
Yueqiang Shang, Qihui Zhang. A subgrid stabilizing postprocessed mixed finite element method for the time-dependent Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3119-3142. doi: 10.3934/dcdsb.2020222 |
[19] |
Sergey E. Mikhailov, Carlos F. Portillo. Boundary-Domain Integral Equations equivalent to an exterior mixed BVP for the variable-viscosity compressible Stokes PDEs. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1103-1133. doi: 10.3934/cpaa.2021009 |
[20] |
Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]