[1]
|
S. D. Babacan, L. Mancera, R. Molina and A. Katsaggelos, Non-convex priors in Bayesian compressed sensing, The 17th European Signal Processing Conference, Glasgow (UK), (2009), 110-114.
doi: 10.1109/TIP.2009.2032894.
|
[2]
|
W. Bian, X. J. Chen and Y. Y. Ye, Complexity analysis of interior point algorithms for non-Lipschitz and nonconvex minimization, Mathematical Programming, 149 (2015), 301-327.
doi: 10.1007/s10107-014-0753-5.
|
[3]
|
P. Bonami and M. Lejeune, An exact solution approach for portfolio optimization problems under stochastic and integer constraints, Operations Research, 57 (2009), 650-670.
doi: 10.1287/opre.1080.0599.
|
[4]
|
J. Brodie, I. Daubechies, C. D. Mol, D. Giannone and I. Loris, Sparse and stable Markowitz portfolios, Proceedings of the National Academy of Science USA, 106 (2009), 12267-12272.
doi: 10.1073/pnas.0904287106.
|
[5]
|
T. J. Chang, N. Meade, J. Beasley and Y. M. Sharaiha, Heuristics for cardinality constrained portfolio optimisation, Computers and Operations Research, 27 (2000), 1271-1302.
doi: 10.1016/S0305-0548(99)00074-X.
|
[6]
|
R. Chartrand and W. T. Yin, Iteratively reweighted algorithms for compressive sensing, IEEE International Conference on Acoustics, Speech, and Signal Processing, (2008), 3869-3872.
|
[7]
|
C. Chen, X. Li, C. Tolman, S. Wang and Y. Y. Ye, Sparse portfolio selection via quasi-norm regularization, preprint, 2014, arXiv: 1312.6350.
|
[8]
|
X. J. Chen, D. D. Ge, Z. Wang and Y. Y. Ye, Complexity of unconstrained $\ell_{2}-\ell_{p}$ minimization, Mathematical Programming, 143 (2014), 371-383.
doi: 10.1007/s10107-012-0613-0.
|
[9]
|
X. J. Chen, L. Guo, Z. S. Lu and J. J. Ye, An augmented Lagrangian method for non-Lipschitz nonconvex programming, SIAM Journal on Numerical Analysis, 55 (2017), 168-193.
doi: 10.1137/15M1052834.
|
[10]
|
X. J. Chen, M. K. Ng and C. Zhang, Non-Lipschitz $\ell_{p}$-regularization and box constrained model for image restoration, IEEE Transactions on Image Processing, 21 (2012), 4709-4721.
doi: 10.1109/TIP.2012.2214051.
|
[11]
|
X. J. Chen, F. M. Xu and Y. Y. Ye, Lower bound theory of nonzero entries in solutions of $\ell_{2}-\ell_{p}$ minimization, SIAM Journal on Scientific Computing, 32 (2010), 2832-2852.
doi: 10.1137/090761471.
|
[12]
|
V. DeMiguel, L. Garlappi, F. Nogales and R. Uppal, A generalized approach to portfolio optimization: Improving performance by constraining portfolio norms, Management Science, 55 (2009a), 798-812.
|
[13]
|
V. DeMiguel, L. Garlappi and R. Uppal, Optimal versus naive diversification: How inefficient is the 1/n portfolio strategy? Review of Financial Studies, 22 (2009b), 1915-1953.
|
[14]
|
D. W. Diamond and R. E. Verrecchia, Constraints on short-selling and asset price adjustment to private information, Journal of Financial Economics, 18 (2006), 277-311.
|
[15]
|
B. Fastrich, S. Paterlini and P. Winker, Cardinality versus $q$-norm constraints for index tracking, Quantitative Finance, 14 (2014), 2019-2032.
doi: 10.1080/14697688.2012.691986.
|
[16]
|
J. Gothoh and A. Takeda, On the role of norm constraints in portfolio selection, Computational Management Science, 8 (2011), 323-353.
doi: 10.1007/s10287-011-0130-2.
|
[17]
|
A. E. Hoerl, Application of ridge analysis to regression problems, Chemical Engineering Progress, 58 (1962), 54-59.
|
[18]
|
A. E. Hoerl and R. W. Kennard, Ridge regression: Biased estimation for nonorthogonal problems, Technometrics, 12 (1970), 55-67.
|
[19]
|
R. Jagannathan and T. Ma, Risk reduction in large portfolios: Why imposing the wrong constraints helps, Journal of Finance, 58 (2003), 1651-1684.
|
[20]
|
R. Jarrow, Heterogeneous expectations, restrictions on short sales, and equilibrium asset prices, Journal of Finance, 35 (1980), 1105-1113.
|
[21]
|
M. Kloft, U. Brefeld, S. Sonnenburg, P. Laskov, K.-R. M$\ddot{\mbox{u}}$ller and A. Zien, Efficient and accurate $L_p$-norm multiple kernel learning, Advances in Neural Information Processing Systems, 22 (2009), 997-1005.
|
[22]
|
C. Michelot, A finite algorithm for finding the projection of a point onto the canonical simplex of ${R}^{n}$, Journal of Optimization Theory and Applications, 50 (1986), 195-200.
doi: 10.1007/BF00938486.
|
[23]
|
S. J. Qin, A statistical perspective of neural networks for process modelling and control, Proceedings of the 1993 International Symposium on Intelligent Control, Chicago, Illinois,
USA, 1993.
|
[24]
|
A. Rakotomamonjy, R. Flamary, G. Gasso and S. Canu, $\ell_{p}-\ell_{q}$ penalty for sparse linear and sparse multiple kernel multitask learning, IEEE Transactions on Neural Networks, 22 (2011), 1307-1320.
|
[25]
|
R. Ruiz-Torrubiano and A. Su$\acute{\rm a}$rez, A hybrid optimization approach to index tracking, Annals of Operations Research, 166 (2009), 57-71.
doi: 10.1007/s10479-008-0404-4.
|
[26]
|
A. Takeda, M. Niranjan, J. Gotoh and Y. Kawahara, Simultaneous pursuit of out-of-sample performance and sparsity in index tracking portfolios, Computational Management Science, 10 (2012), 21-49.
doi: 10.1007/s10287-012-0158-y.
|
[27]
|
R. Tibshirani, Optimal reinsertion: Regression shrinkage and selection via the lasso, Royal Statistical Society, 58 (1996), 267-288.
|
[28]
|
D. H. Trinh, M. Luong, J. M. Rocchisani, C. D. Pham and F. Dibos, Medical image denoising using kernel ridge regression, Processing of 2011 IEEE International Conference on Image
Processing, Brussels, 2011.
|
[29]
|
M. Woodside-Oriakhi, C. Lucas and J. Beasley, Heuristic algorithms for the cardinality constrained efficient frontier, European Journal of Operational Research, 213 (2011), 538-550.
doi: 10.1016/j.ejor.2011.03.030.
|
[30]
|
F. M. Xu, Z. Xu and H. Xue, Sparse index tracking: An $\ell_{1/2}$ regularization model and solution, 2011. Available from: gr.xjtu.edu.cn/LiferayFCKeditor/UserFiles/File/NewAOR.pdf.
|
[31]
|
F. M. Xu, Z. Lu and Z. Xu, An efficient optimization approach for a cardinality-constrained index tracking problem, Optimization Methods and Software, 31 (2016), 258-271.
doi: 10.1080/10556788.2015.1062891.
|
[32]
|
M. W. Xu, S. Y. Wu and J. J. Ye, Solving semi-infinite programs by smoothing projected gradient method, Computational Optimization and Applications, 59 (2014), 591-616.
doi: 10.1007/s10589-014-9654-z.
|
[33]
|
Y. M. Yen and T. J. Yen, Solving norm constrained portfolio optimization via coordinate-wise descent algorithms, Computational Statistics and Data Analysis, 76 (2014), 737-759.
doi: 10.1016/j.csda.2013.07.010.
|
[34]
|
C. Zhang and X. J. Chen, Smoothing projected gradient method and its application to stochastic linear complementarity problems, SIAM Journal on Optimization, 20 (2009), 627-649.
doi: 10.1137/070702187.
|
[35]
|
Z. Zhao, F. M. Xu and X. Li, Adaptive projected gradient thresholding methods for constrained $l_0$ problems, Science China Mathematics, 58 (2015), 2205-2224.
doi: 10.1007/s11425-015-5038-9.
|