
- Previous Article
- JIMO Home
- This Issue
-
Next Article
Computational optimal control of 1D colloid transport by solute gradients in dead-end micro-channels
Robust solution for a minimax regret hub location problem in a fuzzy-stochastic environment
1. | Department of Industrial Engineering & Management Systems, Amirkabir University of Technology, Tehran, Iran |
2. | Department of Industrial Engineering, Shahed University, Tehran, Iran |
In the present paper, a robust approach is used to locate hub facilities considering network risks. An additional objective function, minimax regret, is added to the classical objective function in the hub location problem. In the proposed model, risk factors such as availability, security, delay time, environmental guidelines and regional air pollution are considered using triangular fuzzy-stochastic numbers. Then an equivalent crisp single objective model is proposed and solved by the Benders decomposition method. Finally, the results of both Benders decomposition and commercial optimization software are compared for different instances. Numerical instances were developed based on the well-known Civil Aeronautics Board (CAB) data set, considering different levels of uncertainty in parameters. The results show that the proposed model is capable of selecting nodes as sustainable hubs. Also, the results confirm that using Benders decomposition is more efficient than using classical solution methods for large-scale problems.
References:
[1] |
S. Alumur and B. Y. Kara,
A new model for the hazardous waste location-routing problem, Comp. Oper. Res., 34 (2007), 1406-1423.
doi: 10.1016/j.cor.2005.06.012. |
[2] |
S. A. Alumur, S. Nickel and F. Saldanha-da-Gama,
Hub location under uncertainty, Trans. Res. Part B: Method., 46 (2012), 529-543.
doi: 10.1016/j.trb.2011.11.006. |
[3] |
F. Atoei, E. Teimory and A. Amiri, Designing reliable supply chain network with disruption risk, Int. J. Indust. Eng. Comp., 4 (2013), 111-126. Google Scholar |
[4] |
M. Bashiri, M. Mirzaei and M. Randall,
Modeling fuzzy capacitated p-hub center problem and a genetic algorithm solution, Appl. Math. Model., 37 (2013), 3513-3525.
doi: 10.1016/j.apm.2012.07.018. |
[5] |
J. F. Benders,
Partitioning procedures for solving mixed-variables programming problems, Numer. Math., 4 (1962), 238-252.
doi: 10.1007/BF01386316. |
[6] |
R. Caballero, M. González, F. M. Guerrero, J. Molina and C. Paralera,
Solving a multiobjective location routing problem with a metaheuristic based on tabu search. Application to a real case in Andalusia, European Journal of Operational Research, 177 (2007), 1751-1763.
doi: 10.1016/j.ejor.2005.10.017. |
[7] |
R. S. de Camargo, G. de Miranda, Jr. and R. P. M. Ferreira,
A hybrid outer-approximation/benders decomposition algorithm for the single allocation hub location problem under congestion, Oper. Res. Lett., 39 (2011), 329-337.
doi: 10.1016/j.orl.2011.06.015. |
[8] |
R. S. de Camargo, G. de Miranda, Jr., R. P. M. Ferreira and H. P. Luna,
Multiple allocation hub-and-spoke network design under hub congestion, Comp. Oper. Res., 36 (2009), 3097-3106.
doi: 10.1016/j.cor.2008.10.004. |
[9] |
R. S. de Camargo, G. de Miranda, Jr. and H. P. Luna,
Benders decomposition for the uncapacitated multiple allocation hub location problem, Comp. Oper. Res., 35 (2008), 1047-1064.
doi: 10.1016/j.cor.2006.07.002. |
[10] |
R. S. de Camargo, G. de Miranda, Jr. and H. L. P. Luna,
Benders decomposition for hub location problems with economies of scale, Transportation Science, 43 (2008), 86-97.
doi: 10.1287/trsc.1080.0233. |
[11] |
J. F. Campbell,
Integer programming formulations of discrete hub location problems, Eur. J. Oper. R., 72 (1994), 387-405.
doi: 10.1016/0377-2217(94)90318-2. |
[12] |
Z. Chen, H. Li, H. Ren, Q. Xu and J. Hong,
A total environmental risk assessment model for international hub airports, Int. J. Proj. Man., 29 (2011), 856-866.
doi: 10.1016/j.ijproman.2011.03.004. |
[13] |
G. Chen and T. T. Pham, Introduction to Fuzzy Sets, Fuzzy Logic, and Fuzzy Control Systems, CRC Press, 2000.
doi: 10.1201/9781420039818.![]() |
[14] |
I. Contreras, J.-F. Cordeau and G. Laporte,
Benders decomposition for large-scale uncapacitated hub location, Operations Research, 59 (2011), 1477-1490.
doi: 10.1287/opre.1110.0965. |
[15] |
I. Contreras, J.-F. Cordeau and G. Laporte,
Stochastic uncapacitated hub location, Eur. J. Oper. Res., 212 (2011), 518-528.
doi: 10.1016/j.ejor.2011.02.018. |
[16] |
I. Contreras, J.-F. Cordeau and G. Laporte,
Exact solution of large-scale hub location problems with multiple capacity levels, Transportation Science, 46 (2012), 439-459.
doi: 10.1287/trsc.1110.0398. |
[17] |
S. Davari, M. H. Fazel Zarandi and A. Hemmati,
Maximal covering location problem (MCLP) with fuzzy travel times, Expert Systems with Applications, 38 (2011), 14535-14541.
doi: 10.1016/j.eswa.2011.05.031. |
[18] |
K. Deb,
Multi-objective Optimization Using Evolutionary Algorithms, Wiley-Interscience Series in Systems and Optimization, John Wiley & Sons, Ltd., Chichester, 2001. |
[19] |
M. Eghbali, M. Abedzadeh and M. Setak,
Multi-objective reliable hub covering location considering customer convenience using NSGA-Ⅱ, Int. J. Syst. Assur. Eng. Manag., 5 (2014), 450-460.
doi: 10.1007/s13198-013-0189-y. |
[20] |
E. Erkut and O. Alp, Designing a road network for hazardous materials shipments, Comp. Oper. Res., 34 (2007), 1389-1405. Google Scholar |
[21] |
A. Eydi and A. Mirakhorli, An extended model for the uncapacitated single allocation hub covering problem in a fuzzy environment, in Proceedings of the International Multiconference of Engineers and Computer Scientists, International Association of Engineers, Hong Kong, Vol Ⅱ, (2012). Google Scholar |
[22] |
P. Garcia-Herreros, J. M. Wassick and I. E. Grossmann,
Design of resilient supply chains with risk of facility disruptions, Indust. Eng. Chem. Res., 53 (2014), 17240-17251.
doi: 10.1021/ie5004174. |
[23] |
S. Gelareh and S. Nickel, A benders decomposition for hub location problems arising in public transport, in Operations Research Proceedings 2007 Part Ⅵ, Springer Berlin Heidelberg, 2008,129-134. Google Scholar |
[24] |
B. Gendron,
Decomposition methods for network design, Procedia-Social and Behavioral Sciences, 20 (2011), 31-37.
doi: 10.1016/j.sbspro.2011.08.006. |
[25] |
A. M. Geoffrion,
Generalized Benders decomposition, J. Optimization Theory Appl., 10 (1972), 237-260.
doi: 10.1007/BF00934810. |
[26] |
M. da Graça Costa, M. E. Captivo and J. Clímaco, Capacitated single allocation hub location problem-A bi-criteria approach, Comp. Oper. Res., 35 (2008), 3671-3695. Google Scholar |
[27] |
I. Heckmann, T. Comes and S. Nickel,
A critical review on supply chain risk-Definition, measure and modeling, Omega, 52 (2015), 119-132.
doi: 10.1016/j.omega.2014.10.004. |
[28] |
C. L. Hwang and K. Yoon,
Multiple Attributes Decision Making. Methods and Applications, Springer-Verlag, Berlin-New York, 1981. |
[29] |
A. Jabbarzadeh, S. G. Jalali Naini, H. Davoudpour and N. Azad, Designing a supply chain network under the risk of disruptions,
Math. Probl. Eng., (2012), Art. ID 234324, 23 pp.
doi: 10.1155/2012/234324. |
[30] |
B. Y. Kara, Modeling and Analysis of Issues in Hub Location Problems, Doctor of Philosophy Thesis, Bilkent University, Ankara, Turkey, 1999. Google Scholar |
[31] |
H. E. Lee, K. H. Park and Z. Z. Bien, Iterative fuzzy clustering algorithm with supervision to construct probabilistic fuzzy rule base from numerical data, Fuzzy Systems, IEEE Transactions on, 16 (2008), 263-277. Google Scholar |
[32] |
J. Li, G. H. Huang, G. Zeng, I. Maqsood and Y. Huang,
An integrated fuzzy-stochastic modeling approach for risk assessment of groundwater contamination, Jour. Environ. Manag., 82 (2007), 173-188.
doi: 10.1016/j.jenvman.2005.12.018. |
[33] |
V. Marianov and D. Serra, Location models for airline hubs behaving as M/D/c queues, Comp. Oper. Res., 30 (2003), 983-1003. Google Scholar |
[34] |
M. Merakl and H. Yaman,
Robust intermodal hub location under polyhedral demand uncertainty, Transportation Research Part B: Methodological, 86 (2016), 66-85.
doi: 10.1016/j.trb.2016.01.010. |
[35] |
A. Mirakhorli, Capacitated single-assignment hub covering location problem under fuzzy environment, in Proceedings of the World Congress on Engineering and Computer Science, 2 (2010), 20-22. Google Scholar |
[36] |
V.-W. Mitchell,
Organizational risk perception and reduction: A literature review, British Journal of Management, 6 (1995), 115-133.
doi: 10.1111/j.1467-8551.1995.tb00089.x. |
[37] |
M. Mohammadi, R. Tavakkoli-Moghaddam and R. Rostami,
A multi-objective imperialist competitive algorithm for a capacitated hub covering location problem, Int. J. Indust. Eng. Comp., 2 (2011), 671-688.
doi: 10.5267/j.ijiec.2010.08.003. |
[38] |
M. Mohammadi, F. Jolai and R. Tavakkoli-Moghaddam,
Solving a new stochastic multi-mode p-hub covering location problem considering risk by a novel multi-objective algorithm, Appl. Math. Model., 37 (2013), 10053-10073.
doi: 10.1016/j.apm.2013.05.063. |
[39] |
M. S. Pishvaee, J. Razmi and S. A. Torabi, An accelerated Benders decomposition algorithm for sustainable supply chain network design under uncertainty: A case study of medical needle and syringe supply chain, Trans. Res. Part E: Log. Trans. Rev., 67 (2014), 14-38. Google Scholar |
[40] |
T. K. Roy and M. Maiti,
A fuzzy EOQ model with demand-dependent unit cost under limited storage capacity, Eur. J. Oper. Res., 99 (1997), 425-432.
doi: 10.1016/S0377-2217(96)00163-4. |
[41] |
E. M. de Sá, R. Morabito and R. S. de Camargo,
Benders decomposition applied to a robust multiple allocation incomplete hub location problem, Computers & Operations Research, 89 (2018), 31-50.
doi: 10.1016/j.cor.2017.08.001. |
[42] |
E. M. de Sá, R. Morabito and R. S. de Camargo, Efficient Benders decomposition algorithms for the robust multiple allocation incomplete hub location problem with service time requirements, Expert Systems with Applications, 93 (2018), 50-61. Google Scholar |
[43] |
E. M. de Sá, R. S. de Camargo and G. de Miranda,
An improved Benders decomposition algorithm for the tree of hubs location problem, European J. Oper. Res., 226 (2013), 185-202.
doi: 10.1016/j.ejor.2012.10.051. |
[44] |
F. S. Salman and E. Yücel,
Emergency facility location under random network damage: Insights from the Istanbul case, Comput. Oper. Res., 62 (2015), 266-281.
doi: 10.1016/j.cor.2014.07.015. |
[45] |
T. Santoso, S. Ahmed, M. Goetschalckx and A. Shapiro,
A stochastic programming approach for supply chain network design under uncertainty, Eur. J. Oper. Res., 167 (2005), 96-115.
doi: 10.1016/j.ejor.2004.01.046. |
[46] |
E. S. Sheppard,
A conceptual framework for dynamic location-Allocation analysis, Environment and Planning A, 6 (1974), 547-564.
doi: 10.1068/a060547. |
[47] |
T. Sim, T. J. Lowe and B. W. Thomas,
The stochastic p-hub center problem with service-level constraints, Comput. Oper. Res., 36 (2009), 3166-3177.
doi: 10.1016/j.cor.2008.11.020. |
[48] |
L. V. Snyder, M. S. Daskin and C. P. Teo,
The stochastic location model with risk pooling, Eur. J. Oper. Res., 179 (2007), 1221-1238.
doi: 10.1016/j.ejor.2005.03.076. |
[49] |
L. V. Snyder, M. P. Scaparra, M. S. Daskin and R. L. Church,
Planning for disruptions in supply chain networks, Tutorials in Operations Research, (2006), 234-257.
doi: 10.1287/educ.1063.0025. |
[50] |
F. Taghipourian, I. Mahdavi, N. Mahdavi-Amiri and A. Makui,
A fuzzy programming approach for dynamic virtual hub location problem, Appl. Math. Model., 36 (2012), 3257-3270.
doi: 10.1016/j.apm.2011.10.016. |
[51] |
A. Tajbakhsh, H. Haleh and J. Razmi, A multi-objective model to single-allocation ordered hub location problems by genetic algorithm, Int. J. Acad. Res. Bus. Soc. Sci., 3 (2013). Available from: http://hrmars.com/admin/pics/1640.pdf. Google Scholar |
[52] |
S. A. Torabi and E. Hassini,
An interactive possibilistic programming approach for multiple objective supply chain master planning, Fuzzy Sets and Systems, 159 (2008), 193-214.
doi: 10.1016/j.fss.2007.08.010. |
[53] |
A. D. Vasconcelos, C. D. Nassi and L. A. Lopes,
The uncapacitated hub location problem in networks under decentralized management, Comput. Oper. Res., 38 (2011), 1656-1666.
doi: 10.1016/j.cor.2011.03.004. |
[54] |
T.-H. Yang,
Stochastic air freight hub location and flight routes planning, Appl. Math. Model., 33 (2009), 4424-4430.
doi: 10.1016/j.apm.2009.03.018. |
[55] |
K. Yang, Y. Liu and G. Yang,
An improved hybrid particle swarm optimization algorithm for fuzzy p-hub center problem, Comput. Indust. Eng., 64 (2013), 133-142.
doi: 10.1016/j.cie.2012.09.006. |
[56] |
L. A. Zadeh,
Fuzzy sets, Information and Control, 8 (1965), 338-353.
doi: 10.1016/S0019-9958(65)90241-X. |
[57] |
H. Zhai, Y. Liu and W. Chen,
Applying minimum-risk criterion to stochastic hub location problems, Procedia Engineering, 29 (2012), 2313-2321.
doi: 10.1016/j.proeng.2012.01.307. |
[58] |
URL: http://www.bigstory.ap.org/article/indonesias-mount-kelud-java-island-erupts, last visited: September 2014. Google Scholar |
[59] |
URL: http://en.wikipedia.org/wiki/2010_eruptions_of_Eyjafjallaj, last visited: September 2014. Google Scholar |
show all references
References:
[1] |
S. Alumur and B. Y. Kara,
A new model for the hazardous waste location-routing problem, Comp. Oper. Res., 34 (2007), 1406-1423.
doi: 10.1016/j.cor.2005.06.012. |
[2] |
S. A. Alumur, S. Nickel and F. Saldanha-da-Gama,
Hub location under uncertainty, Trans. Res. Part B: Method., 46 (2012), 529-543.
doi: 10.1016/j.trb.2011.11.006. |
[3] |
F. Atoei, E. Teimory and A. Amiri, Designing reliable supply chain network with disruption risk, Int. J. Indust. Eng. Comp., 4 (2013), 111-126. Google Scholar |
[4] |
M. Bashiri, M. Mirzaei and M. Randall,
Modeling fuzzy capacitated p-hub center problem and a genetic algorithm solution, Appl. Math. Model., 37 (2013), 3513-3525.
doi: 10.1016/j.apm.2012.07.018. |
[5] |
J. F. Benders,
Partitioning procedures for solving mixed-variables programming problems, Numer. Math., 4 (1962), 238-252.
doi: 10.1007/BF01386316. |
[6] |
R. Caballero, M. González, F. M. Guerrero, J. Molina and C. Paralera,
Solving a multiobjective location routing problem with a metaheuristic based on tabu search. Application to a real case in Andalusia, European Journal of Operational Research, 177 (2007), 1751-1763.
doi: 10.1016/j.ejor.2005.10.017. |
[7] |
R. S. de Camargo, G. de Miranda, Jr. and R. P. M. Ferreira,
A hybrid outer-approximation/benders decomposition algorithm for the single allocation hub location problem under congestion, Oper. Res. Lett., 39 (2011), 329-337.
doi: 10.1016/j.orl.2011.06.015. |
[8] |
R. S. de Camargo, G. de Miranda, Jr., R. P. M. Ferreira and H. P. Luna,
Multiple allocation hub-and-spoke network design under hub congestion, Comp. Oper. Res., 36 (2009), 3097-3106.
doi: 10.1016/j.cor.2008.10.004. |
[9] |
R. S. de Camargo, G. de Miranda, Jr. and H. P. Luna,
Benders decomposition for the uncapacitated multiple allocation hub location problem, Comp. Oper. Res., 35 (2008), 1047-1064.
doi: 10.1016/j.cor.2006.07.002. |
[10] |
R. S. de Camargo, G. de Miranda, Jr. and H. L. P. Luna,
Benders decomposition for hub location problems with economies of scale, Transportation Science, 43 (2008), 86-97.
doi: 10.1287/trsc.1080.0233. |
[11] |
J. F. Campbell,
Integer programming formulations of discrete hub location problems, Eur. J. Oper. R., 72 (1994), 387-405.
doi: 10.1016/0377-2217(94)90318-2. |
[12] |
Z. Chen, H. Li, H. Ren, Q. Xu and J. Hong,
A total environmental risk assessment model for international hub airports, Int. J. Proj. Man., 29 (2011), 856-866.
doi: 10.1016/j.ijproman.2011.03.004. |
[13] |
G. Chen and T. T. Pham, Introduction to Fuzzy Sets, Fuzzy Logic, and Fuzzy Control Systems, CRC Press, 2000.
doi: 10.1201/9781420039818.![]() |
[14] |
I. Contreras, J.-F. Cordeau and G. Laporte,
Benders decomposition for large-scale uncapacitated hub location, Operations Research, 59 (2011), 1477-1490.
doi: 10.1287/opre.1110.0965. |
[15] |
I. Contreras, J.-F. Cordeau and G. Laporte,
Stochastic uncapacitated hub location, Eur. J. Oper. Res., 212 (2011), 518-528.
doi: 10.1016/j.ejor.2011.02.018. |
[16] |
I. Contreras, J.-F. Cordeau and G. Laporte,
Exact solution of large-scale hub location problems with multiple capacity levels, Transportation Science, 46 (2012), 439-459.
doi: 10.1287/trsc.1110.0398. |
[17] |
S. Davari, M. H. Fazel Zarandi and A. Hemmati,
Maximal covering location problem (MCLP) with fuzzy travel times, Expert Systems with Applications, 38 (2011), 14535-14541.
doi: 10.1016/j.eswa.2011.05.031. |
[18] |
K. Deb,
Multi-objective Optimization Using Evolutionary Algorithms, Wiley-Interscience Series in Systems and Optimization, John Wiley & Sons, Ltd., Chichester, 2001. |
[19] |
M. Eghbali, M. Abedzadeh and M. Setak,
Multi-objective reliable hub covering location considering customer convenience using NSGA-Ⅱ, Int. J. Syst. Assur. Eng. Manag., 5 (2014), 450-460.
doi: 10.1007/s13198-013-0189-y. |
[20] |
E. Erkut and O. Alp, Designing a road network for hazardous materials shipments, Comp. Oper. Res., 34 (2007), 1389-1405. Google Scholar |
[21] |
A. Eydi and A. Mirakhorli, An extended model for the uncapacitated single allocation hub covering problem in a fuzzy environment, in Proceedings of the International Multiconference of Engineers and Computer Scientists, International Association of Engineers, Hong Kong, Vol Ⅱ, (2012). Google Scholar |
[22] |
P. Garcia-Herreros, J. M. Wassick and I. E. Grossmann,
Design of resilient supply chains with risk of facility disruptions, Indust. Eng. Chem. Res., 53 (2014), 17240-17251.
doi: 10.1021/ie5004174. |
[23] |
S. Gelareh and S. Nickel, A benders decomposition for hub location problems arising in public transport, in Operations Research Proceedings 2007 Part Ⅵ, Springer Berlin Heidelberg, 2008,129-134. Google Scholar |
[24] |
B. Gendron,
Decomposition methods for network design, Procedia-Social and Behavioral Sciences, 20 (2011), 31-37.
doi: 10.1016/j.sbspro.2011.08.006. |
[25] |
A. M. Geoffrion,
Generalized Benders decomposition, J. Optimization Theory Appl., 10 (1972), 237-260.
doi: 10.1007/BF00934810. |
[26] |
M. da Graça Costa, M. E. Captivo and J. Clímaco, Capacitated single allocation hub location problem-A bi-criteria approach, Comp. Oper. Res., 35 (2008), 3671-3695. Google Scholar |
[27] |
I. Heckmann, T. Comes and S. Nickel,
A critical review on supply chain risk-Definition, measure and modeling, Omega, 52 (2015), 119-132.
doi: 10.1016/j.omega.2014.10.004. |
[28] |
C. L. Hwang and K. Yoon,
Multiple Attributes Decision Making. Methods and Applications, Springer-Verlag, Berlin-New York, 1981. |
[29] |
A. Jabbarzadeh, S. G. Jalali Naini, H. Davoudpour and N. Azad, Designing a supply chain network under the risk of disruptions,
Math. Probl. Eng., (2012), Art. ID 234324, 23 pp.
doi: 10.1155/2012/234324. |
[30] |
B. Y. Kara, Modeling and Analysis of Issues in Hub Location Problems, Doctor of Philosophy Thesis, Bilkent University, Ankara, Turkey, 1999. Google Scholar |
[31] |
H. E. Lee, K. H. Park and Z. Z. Bien, Iterative fuzzy clustering algorithm with supervision to construct probabilistic fuzzy rule base from numerical data, Fuzzy Systems, IEEE Transactions on, 16 (2008), 263-277. Google Scholar |
[32] |
J. Li, G. H. Huang, G. Zeng, I. Maqsood and Y. Huang,
An integrated fuzzy-stochastic modeling approach for risk assessment of groundwater contamination, Jour. Environ. Manag., 82 (2007), 173-188.
doi: 10.1016/j.jenvman.2005.12.018. |
[33] |
V. Marianov and D. Serra, Location models for airline hubs behaving as M/D/c queues, Comp. Oper. Res., 30 (2003), 983-1003. Google Scholar |
[34] |
M. Merakl and H. Yaman,
Robust intermodal hub location under polyhedral demand uncertainty, Transportation Research Part B: Methodological, 86 (2016), 66-85.
doi: 10.1016/j.trb.2016.01.010. |
[35] |
A. Mirakhorli, Capacitated single-assignment hub covering location problem under fuzzy environment, in Proceedings of the World Congress on Engineering and Computer Science, 2 (2010), 20-22. Google Scholar |
[36] |
V.-W. Mitchell,
Organizational risk perception and reduction: A literature review, British Journal of Management, 6 (1995), 115-133.
doi: 10.1111/j.1467-8551.1995.tb00089.x. |
[37] |
M. Mohammadi, R. Tavakkoli-Moghaddam and R. Rostami,
A multi-objective imperialist competitive algorithm for a capacitated hub covering location problem, Int. J. Indust. Eng. Comp., 2 (2011), 671-688.
doi: 10.5267/j.ijiec.2010.08.003. |
[38] |
M. Mohammadi, F. Jolai and R. Tavakkoli-Moghaddam,
Solving a new stochastic multi-mode p-hub covering location problem considering risk by a novel multi-objective algorithm, Appl. Math. Model., 37 (2013), 10053-10073.
doi: 10.1016/j.apm.2013.05.063. |
[39] |
M. S. Pishvaee, J. Razmi and S. A. Torabi, An accelerated Benders decomposition algorithm for sustainable supply chain network design under uncertainty: A case study of medical needle and syringe supply chain, Trans. Res. Part E: Log. Trans. Rev., 67 (2014), 14-38. Google Scholar |
[40] |
T. K. Roy and M. Maiti,
A fuzzy EOQ model with demand-dependent unit cost under limited storage capacity, Eur. J. Oper. Res., 99 (1997), 425-432.
doi: 10.1016/S0377-2217(96)00163-4. |
[41] |
E. M. de Sá, R. Morabito and R. S. de Camargo,
Benders decomposition applied to a robust multiple allocation incomplete hub location problem, Computers & Operations Research, 89 (2018), 31-50.
doi: 10.1016/j.cor.2017.08.001. |
[42] |
E. M. de Sá, R. Morabito and R. S. de Camargo, Efficient Benders decomposition algorithms for the robust multiple allocation incomplete hub location problem with service time requirements, Expert Systems with Applications, 93 (2018), 50-61. Google Scholar |
[43] |
E. M. de Sá, R. S. de Camargo and G. de Miranda,
An improved Benders decomposition algorithm for the tree of hubs location problem, European J. Oper. Res., 226 (2013), 185-202.
doi: 10.1016/j.ejor.2012.10.051. |
[44] |
F. S. Salman and E. Yücel,
Emergency facility location under random network damage: Insights from the Istanbul case, Comput. Oper. Res., 62 (2015), 266-281.
doi: 10.1016/j.cor.2014.07.015. |
[45] |
T. Santoso, S. Ahmed, M. Goetschalckx and A. Shapiro,
A stochastic programming approach for supply chain network design under uncertainty, Eur. J. Oper. Res., 167 (2005), 96-115.
doi: 10.1016/j.ejor.2004.01.046. |
[46] |
E. S. Sheppard,
A conceptual framework for dynamic location-Allocation analysis, Environment and Planning A, 6 (1974), 547-564.
doi: 10.1068/a060547. |
[47] |
T. Sim, T. J. Lowe and B. W. Thomas,
The stochastic p-hub center problem with service-level constraints, Comput. Oper. Res., 36 (2009), 3166-3177.
doi: 10.1016/j.cor.2008.11.020. |
[48] |
L. V. Snyder, M. S. Daskin and C. P. Teo,
The stochastic location model with risk pooling, Eur. J. Oper. Res., 179 (2007), 1221-1238.
doi: 10.1016/j.ejor.2005.03.076. |
[49] |
L. V. Snyder, M. P. Scaparra, M. S. Daskin and R. L. Church,
Planning for disruptions in supply chain networks, Tutorials in Operations Research, (2006), 234-257.
doi: 10.1287/educ.1063.0025. |
[50] |
F. Taghipourian, I. Mahdavi, N. Mahdavi-Amiri and A. Makui,
A fuzzy programming approach for dynamic virtual hub location problem, Appl. Math. Model., 36 (2012), 3257-3270.
doi: 10.1016/j.apm.2011.10.016. |
[51] |
A. Tajbakhsh, H. Haleh and J. Razmi, A multi-objective model to single-allocation ordered hub location problems by genetic algorithm, Int. J. Acad. Res. Bus. Soc. Sci., 3 (2013). Available from: http://hrmars.com/admin/pics/1640.pdf. Google Scholar |
[52] |
S. A. Torabi and E. Hassini,
An interactive possibilistic programming approach for multiple objective supply chain master planning, Fuzzy Sets and Systems, 159 (2008), 193-214.
doi: 10.1016/j.fss.2007.08.010. |
[53] |
A. D. Vasconcelos, C. D. Nassi and L. A. Lopes,
The uncapacitated hub location problem in networks under decentralized management, Comput. Oper. Res., 38 (2011), 1656-1666.
doi: 10.1016/j.cor.2011.03.004. |
[54] |
T.-H. Yang,
Stochastic air freight hub location and flight routes planning, Appl. Math. Model., 33 (2009), 4424-4430.
doi: 10.1016/j.apm.2009.03.018. |
[55] |
K. Yang, Y. Liu and G. Yang,
An improved hybrid particle swarm optimization algorithm for fuzzy p-hub center problem, Comput. Indust. Eng., 64 (2013), 133-142.
doi: 10.1016/j.cie.2012.09.006. |
[56] |
L. A. Zadeh,
Fuzzy sets, Information and Control, 8 (1965), 338-353.
doi: 10.1016/S0019-9958(65)90241-X. |
[57] |
H. Zhai, Y. Liu and W. Chen,
Applying minimum-risk criterion to stochastic hub location problems, Procedia Engineering, 29 (2012), 2313-2321.
doi: 10.1016/j.proeng.2012.01.307. |
[58] |
URL: http://www.bigstory.ap.org/article/indonesias-mount-kelud-java-island-erupts, last visited: September 2014. Google Scholar |
[59] |
URL: http://en.wikipedia.org/wiki/2010_eruptions_of_Eyjafjallaj, last visited: September 2014. Google Scholar |






Reference | Year | Model | Number of objectives | MODM1 approach | Risk assessment approach | Risk factors | Objective functions | Uncertainty | Solution approach | |||
Fuzzy | Stochastic | |||||||||||
Parameter | Approach | Parameter | Approach | |||||||||
Chen et al. [12] | 2011 | - | - | - | ANF | Environmental risks | - | - | - | - | - | - |
Snyder et al. [48] | 2006 | Supply chain network | Single | - | Expected value, Worst-case value | Supply risks | Cost | - | - | Cost | Scenario-based | - |
Jabbarzadeh et al. [29] | 2012 | Supply chain network | Single | - | Expected value | Environmental and operational risks | Profit | - | - | Cost | Scenario-based | Lagrangian relaxation, GA |
Atoei et al. [3] | 2013 | Supply chain network | Multiple | ε-constraint method | Expected value | Environmental, macro and supply risks | Cost/ Reliability | - | - | Reliability/ Capacity | Scenario-based | NSGA-Ⅱ |
Garcia-Herreros et al. [22] | 2014 | Supply chain network | Single | - | Expected value | Operational risks | Cost | - | - | The availabilityof DC | Scenario-based | Accelerated BD |
Pishvaee et al. [39] | 2014 | Supply chain network | Multiple | WSM2 | possibility | Environmental, macro and | Cost/ Environmental impact/ Social responsibility | Social impact | Credibility | - | - | Accelerated BD |
Marianov et al. [33] | 2003 | HLF | Single | - | - | - | Cost | - | - | Number of plane | Probability | TS |
Snyder et al. [49] | 2007 | Location model | Single | - | - | - | Cost | - | - | Cost | Scenario-based | Lagrangian relaxation |
Camargo et al. [9] | 2008 | HLP | Single | - | - | - | Cost | - | - | - | - | BD |
Costa et al. [26] | 2008 | HLF | Multiple | WSM/WCD3 | - | - | Cost/Tiine | - | - | - | - | An interactive decision-aid approach |
Sim et al. [47] | 2009 | P-hub center problem | Single | - | - | - | Time | - | - | Time | Chance constraint | Radial heuristic & Teitz-Bart heuristic |
Yang [54] | 2009 | HLP | Single | - | - | Cost | - | - | Demand | Scenario-based | Heuristic methods | |
Vasconcelos et al. [53] | 2011 | HLP | Single | - | - | Cost | - | - | - | Probability | - | |
Camargo et al. [7] | 2011 | HLP | Single | - | - | Cost | - | - | Demand/ Cost | Probability | BD & OA | |
Contreras et al. [15] | 2011 | HLP | Single | - | - | Cost | - | - | Demand/ Cost | Stochastic | BD | |
Mohainmadi et al. [37] | 2011 | Hub covering location | Multiple | WSM | - | Cost/Time | - | - | - | - | ICA | |
Alumur et al. [2] | 2012 | HLP | Single | - | - | Max cost | - | - | Demand/ Cost | Scenario-based | - | |
Taghipourian et al. [50] | 2012 | Dynamic virtual hub location | Single | _ | - | Cost | Flow and capacity | Fuzzy numbers | - | - | - | |
Zhai et al. [57] | 2012 | HLF | Single | - | Probability function | Macro risks | Services level | - | - | Demand | Chance constraint | B& B |
Bashiri et al. [4] | 2013 | F-hub center problem | Single | - | - | - | Max time | Qualitative parameters | Fuzzy VIKOR method | - | - | GA |
Davari et al. [17] | 2011 | maximal covering problem | Single | - | - | - | Time | Time | Credibility | - | - | SA4 |
Yang et al. [55] | 2013 | P-hub center problem | Single | - | - | - | Time | Travel time | Credibility | - | - | PSO5 |
Mahaminadi et al. [38] | 2013 | Hub covering problem | Multiple | MOICA6 | Reliability constraints | Environmental and operational risks | Cost/Max time | - | - | Time | Probability | MOICA |
Eghhali et al. [19] | 2013 | Hub covering problem | Multiple | - | - | Cost/ Intermediate links | _ | _ | Reliability of path | Reliability | NSGA-Ⅱ | |
Proposed model | 2018 | HLP | Multiple | WSM | Regret/ Expected value | Environmental, operational, macro, security and supply risks | Cost/ Risk | Risk factors | Fuzzy numbers | Cost/ Risk factors | Scenario-based | BD |
Reference | Year | Model | Number of objectives | MODM1 approach | Risk assessment approach | Risk factors | Objective functions | Uncertainty | Solution approach | |||
Fuzzy | Stochastic | |||||||||||
Parameter | Approach | Parameter | Approach | |||||||||
Chen et al. [12] | 2011 | - | - | - | ANF | Environmental risks | - | - | - | - | - | - |
Snyder et al. [48] | 2006 | Supply chain network | Single | - | Expected value, Worst-case value | Supply risks | Cost | - | - | Cost | Scenario-based | - |
Jabbarzadeh et al. [29] | 2012 | Supply chain network | Single | - | Expected value | Environmental and operational risks | Profit | - | - | Cost | Scenario-based | Lagrangian relaxation, GA |
Atoei et al. [3] | 2013 | Supply chain network | Multiple | ε-constraint method | Expected value | Environmental, macro and supply risks | Cost/ Reliability | - | - | Reliability/ Capacity | Scenario-based | NSGA-Ⅱ |
Garcia-Herreros et al. [22] | 2014 | Supply chain network | Single | - | Expected value | Operational risks | Cost | - | - | The availabilityof DC | Scenario-based | Accelerated BD |
Pishvaee et al. [39] | 2014 | Supply chain network | Multiple | WSM2 | possibility | Environmental, macro and | Cost/ Environmental impact/ Social responsibility | Social impact | Credibility | - | - | Accelerated BD |
Marianov et al. [33] | 2003 | HLF | Single | - | - | - | Cost | - | - | Number of plane | Probability | TS |
Snyder et al. [49] | 2007 | Location model | Single | - | - | - | Cost | - | - | Cost | Scenario-based | Lagrangian relaxation |
Camargo et al. [9] | 2008 | HLP | Single | - | - | - | Cost | - | - | - | - | BD |
Costa et al. [26] | 2008 | HLF | Multiple | WSM/WCD3 | - | - | Cost/Tiine | - | - | - | - | An interactive decision-aid approach |
Sim et al. [47] | 2009 | P-hub center problem | Single | - | - | - | Time | - | - | Time | Chance constraint | Radial heuristic & Teitz-Bart heuristic |
Yang [54] | 2009 | HLP | Single | - | - | Cost | - | - | Demand | Scenario-based | Heuristic methods | |
Vasconcelos et al. [53] | 2011 | HLP | Single | - | - | Cost | - | - | - | Probability | - | |
Camargo et al. [7] | 2011 | HLP | Single | - | - | Cost | - | - | Demand/ Cost | Probability | BD & OA | |
Contreras et al. [15] | 2011 | HLP | Single | - | - | Cost | - | - | Demand/ Cost | Stochastic | BD | |
Mohainmadi et al. [37] | 2011 | Hub covering location | Multiple | WSM | - | Cost/Time | - | - | - | - | ICA | |
Alumur et al. [2] | 2012 | HLP | Single | - | - | Max cost | - | - | Demand/ Cost | Scenario-based | - | |
Taghipourian et al. [50] | 2012 | Dynamic virtual hub location | Single | _ | - | Cost | Flow and capacity | Fuzzy numbers | - | - | - | |
Zhai et al. [57] | 2012 | HLF | Single | - | Probability function | Macro risks | Services level | - | - | Demand | Chance constraint | B& B |
Bashiri et al. [4] | 2013 | F-hub center problem | Single | - | - | - | Max time | Qualitative parameters | Fuzzy VIKOR method | - | - | GA |
Davari et al. [17] | 2011 | maximal covering problem | Single | - | - | - | Time | Time | Credibility | - | - | SA4 |
Yang et al. [55] | 2013 | P-hub center problem | Single | - | - | - | Time | Travel time | Credibility | - | - | PSO5 |
Mahaminadi et al. [38] | 2013 | Hub covering problem | Multiple | MOICA6 | Reliability constraints | Environmental and operational risks | Cost/Max time | - | - | Time | Probability | MOICA |
Eghhali et al. [19] | 2013 | Hub covering problem | Multiple | - | - | Cost/ Intermediate links | _ | _ | Reliability of path | Reliability | NSGA-Ⅱ | |
Proposed model | 2018 | HLP | Multiple | WSM | Regret/ Expected value | Environmental, operational, macro, security and supply risks | Cost/ Risk | Risk factors | Fuzzy numbers | Cost/ Risk factors | Scenario-based | BD |
Problem | No. of constraints | No. of variables | |
Binary | Continues | ||
RHLP-FSE | |||
Classical HLP |
Problem | No. of constraints | No. of variables | |
Binary | Continues | ||
RHLP-FSE | |||
Classical HLP |
|N||H| | No of variables | No of constraints | B&B solution | BD solution | No of iterations | %Gap | |||||||
Continues | Binary | Equality | Inequality | Time (s) | Time (s) | ||||||||
4 | 9 | 21736 | 9 | 245 | 65520 | 0.3214 | 4 | 92.9 | 0.3214 | 4 | 153.2 | 2 | 0 |
6 | 7 | 28456 | 7 | 545 | 91665 | 0.3255 | 6 | 98.3 | 0.3255 | 6 | 194.5 | 7 | 0 |
6 | 9 | 46575 | 9 | 540 | 147830 | 0.3410 | 3, 4 | 108.9 | 0.3410 | 3, 4 | 178.7 | 16 | 0 |
8 | 7 | 49456 | 7 | 965 | 160125 | 0.3289 | 6 | 265.2 | 0.3289 | 6 | 234.3 | 8 | 0 |
10 | 7 | 76336 | 7 | 1505 | 247905 | n.a. | n.a. | _1 | 0.2979 | 2, 4 | 478.3 | 11 | 0 |
12 | 7 | 109095 | 7 | 2160 | 355010 | n.a. | n.a. | _1 | 0.2390 | 3, 5, 7 | 763.2 | 11 | 10-6 |
15 | 7 | 169261 | 7 | 3380 | 551880 | n.a. | n.a. | _2 | 0.2881 | 2, 5, 7 | 1101.1 | 8 | 10-5 |
16 | 5 | 98775 | 5 | 3840 | 332330 | n.a. | n.a. | _2 | 0.2671 | 5 | 1371.6 | 7 | 10-4 |
18 | 5 | 124575 | 5 | 4860 | 419630 | n.a. | n.a. | _2 | 0.2648 | 5 | 1427.4 | 10 | 10-4 |
20 | 5 | 298936 | 5 | 6005 | 976605 | n.a. | n.a. | _2 | 0.2754 | 4, 18 | 1872.2 | 9 | 10-3 |
B&B: B&B result, BD: Benders decomposition result, −1 : Time limitation, −2: Lack of memory |
|N||H| | No of variables | No of constraints | B&B solution | BD solution | No of iterations | %Gap | |||||||
Continues | Binary | Equality | Inequality | Time (s) | Time (s) | ||||||||
4 | 9 | 21736 | 9 | 245 | 65520 | 0.3214 | 4 | 92.9 | 0.3214 | 4 | 153.2 | 2 | 0 |
6 | 7 | 28456 | 7 | 545 | 91665 | 0.3255 | 6 | 98.3 | 0.3255 | 6 | 194.5 | 7 | 0 |
6 | 9 | 46575 | 9 | 540 | 147830 | 0.3410 | 3, 4 | 108.9 | 0.3410 | 3, 4 | 178.7 | 16 | 0 |
8 | 7 | 49456 | 7 | 965 | 160125 | 0.3289 | 6 | 265.2 | 0.3289 | 6 | 234.3 | 8 | 0 |
10 | 7 | 76336 | 7 | 1505 | 247905 | n.a. | n.a. | _1 | 0.2979 | 2, 4 | 478.3 | 11 | 0 |
12 | 7 | 109095 | 7 | 2160 | 355010 | n.a. | n.a. | _1 | 0.2390 | 3, 5, 7 | 763.2 | 11 | 10-6 |
15 | 7 | 169261 | 7 | 3380 | 551880 | n.a. | n.a. | _2 | 0.2881 | 2, 5, 7 | 1101.1 | 8 | 10-5 |
16 | 5 | 98775 | 5 | 3840 | 332330 | n.a. | n.a. | _2 | 0.2671 | 5 | 1371.6 | 7 | 10-4 |
18 | 5 | 124575 | 5 | 4860 | 419630 | n.a. | n.a. | _2 | 0.2648 | 5 | 1427.4 | 10 | 10-4 |
20 | 5 | 298936 | 5 | 6005 | 976605 | n.a. | n.a. | _2 | 0.2754 | 4, 18 | 1872.2 | 9 | 10-3 |
B&B: B&B result, BD: Benders decomposition result, −1 : Time limitation, −2: Lack of memory |
|N||H| | No of variables | No of constraints | B&B solution | BD solution | No of iterations | %Gap | |||||||
Continues | Binary | Equality | Inequality | Time (s) | Time (s) | ||||||||
4 | 9 | 21736 | 9 | 245 | 65520 | 0.2670 | 4 | 87.4 | 0.2670 | 4 | 133.4 | 2 | 0 |
6 | 7 | 28456 | 7 | 545 | 91665 | 0.2487 | 1 | 201.4 | 0.2487 | 1 | 198.9 | 4 | 0 |
6 | 9 | 46575 | 9 | 540 | 147830 | 0.2500 | 6 | 214.4 | 0.2500 | 6 | 220.0 | 5 | 0 |
8 | 7 | 49456 | 7 | 965 | 160125 | 0.2384 | 6 | 264.2 | 0.2384 | 6 | 248.3 | 3 | 0 |
10 | 7 | 76336 | 7 | 1505 | 247905 | n.a. | n.a. | _1 | 0.2425 | 5 | 348.5 | 5 | 0 |
12 | 7 | 109095 | 7 | 2160 | 355010 | n.a. | n.a. | _1 | 0.3131 | 4, 7 | 654.2 | 7 | 10-6 |
15 | 7 | 169261 | 7 | 3380 | 551880 | n.a. | n.a. | _2 | 0.2657 | 2, 5 | 985.3 | 6 | 10-5 |
16 | 5 | 98775 | 5 | 3840 | 332330 | n.a. | n.a. | _2 | 0.3117 | 5 | 1321.6 | 6 | 10-4 |
18 | 5 | 124575 | 5 | 4860 | 419630 | n.a. | n.a. | _2 | 0.3736 | 2 | 1563.2 | 12 | 10-4 |
20 | 5 | 298936 | 5 | 6005 | 976605 | n.a. | n.a. | _2 | 0.2576 | 20 | 1983.1 | 7 | 10-3 |
|N||H| | No of variables | No of constraints | B&B solution | BD solution | No of iterations | %Gap | |||||||
Continues | Binary | Equality | Inequality | Time (s) | Time (s) | ||||||||
4 | 9 | 21736 | 9 | 245 | 65520 | 0.2670 | 4 | 87.4 | 0.2670 | 4 | 133.4 | 2 | 0 |
6 | 7 | 28456 | 7 | 545 | 91665 | 0.2487 | 1 | 201.4 | 0.2487 | 1 | 198.9 | 4 | 0 |
6 | 9 | 46575 | 9 | 540 | 147830 | 0.2500 | 6 | 214.4 | 0.2500 | 6 | 220.0 | 5 | 0 |
8 | 7 | 49456 | 7 | 965 | 160125 | 0.2384 | 6 | 264.2 | 0.2384 | 6 | 248.3 | 3 | 0 |
10 | 7 | 76336 | 7 | 1505 | 247905 | n.a. | n.a. | _1 | 0.2425 | 5 | 348.5 | 5 | 0 |
12 | 7 | 109095 | 7 | 2160 | 355010 | n.a. | n.a. | _1 | 0.3131 | 4, 7 | 654.2 | 7 | 10-6 |
15 | 7 | 169261 | 7 | 3380 | 551880 | n.a. | n.a. | _2 | 0.2657 | 2, 5 | 985.3 | 6 | 10-5 |
16 | 5 | 98775 | 5 | 3840 | 332330 | n.a. | n.a. | _2 | 0.3117 | 5 | 1321.6 | 6 | 10-4 |
18 | 5 | 124575 | 5 | 4860 | 419630 | n.a. | n.a. | _2 | 0.3736 | 2 | 1563.2 | 12 | 10-4 |
20 | 5 | 298936 | 5 | 6005 | 976605 | n.a. | n.a. | _2 | 0.2576 | 20 | 1983.1 | 7 | 10-3 |
|N||H| | No of variables | No of constraints | CM solution | RHLP-FSE solution | |||||||
Continues | Binary | Equality | Inequality | z*CM | Lost flows | z*RHLP −FSE | Lost flows | ||||
4 | 5 | 6976 | 5 | 245 | 22725 | 1, 3, 4 | 7543 | 3, 4 | 6060 | ||
4 | 7 | 13336 | 7 | 245 | 42525 | 1, 2, 3, 4 | 12110 | 4 | 9599 | ||
6 | 5 | 14776 | 5 | 545 | 48825 | 1, 3, 4 | 3714 | 2 | 4892 | ||
6 | 7 | 28456 | 7 | 545 | 91665 | 1, 3, 4, 6 | 8825 | 2, 4 | 5982 | ||
8 | 5 | 25576 | 5 | 965 | 85125 | 3, 5 | 9691 | 6 | 598 | ||
8 | 7 | 49456 | 7 | 965 | 160125 | 1, 3, 4, 6, 7 | 9687 | 6, 7 | 1446 |
|N||H| | No of variables | No of constraints | CM solution | RHLP-FSE solution | |||||||
Continues | Binary | Equality | Inequality | z*CM | Lost flows | z*RHLP −FSE | Lost flows | ||||
4 | 5 | 6976 | 5 | 245 | 22725 | 1, 3, 4 | 7543 | 3, 4 | 6060 | ||
4 | 7 | 13336 | 7 | 245 | 42525 | 1, 2, 3, 4 | 12110 | 4 | 9599 | ||
6 | 5 | 14776 | 5 | 545 | 48825 | 1, 3, 4 | 3714 | 2 | 4892 | ||
6 | 7 | 28456 | 7 | 545 | 91665 | 1, 3, 4, 6 | 8825 | 2, 4 | 5982 | ||
8 | 5 | 25576 | 5 | 965 | 85125 | 3, 5 | 9691 | 6 | 598 | ||
8 | 7 | 49456 | 7 | 965 | 160125 | 1, 3, 4, 6, 7 | 9687 | 6, 7 | 1446 |
[1] |
Ashkan Ayough, Farbod Farhadi, Mostafa Zandieh, Parisa Rastkhadiv. Genetic algorithm for obstacle location-allocation problems with customer priorities. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1753-1769. doi: 10.3934/jimo.2020044 |
[2] |
Yishui Wang, Dongmei Zhang, Peng Zhang, Yong Zhang. Local search algorithm for the squared metric $ k $-facility location problem with linear penalties. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2013-2030. doi: 10.3934/jimo.2020056 |
[3] |
Reza Lotfi, Yahia Zare Mehrjerdi, Mir Saman Pishvaee, Ahmad Sadeghieh, Gerhard-Wilhelm Weber. A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 221-253. doi: 10.3934/naco.2020023 |
[4] |
Shoufeng Ji, Jinhuan Tang, Minghe Sun, Rongjuan Luo. Multi-objective optimization for a combined location-routing-inventory system considering carbon-capped differences. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021051 |
[5] |
Xianbang Chen, Yang Liu, Bin Li. Adjustable robust optimization in enabling optimal day-ahead economic dispatch of CCHP-MG considering uncertainties of wind-solar power and electric vehicle. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1639-1661. doi: 10.3934/jimo.2020038 |
[6] |
Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109 |
[7] |
Khosro Sayevand, Valeyollah Moradi. A robust computational framework for analyzing fractional dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021022 |
[8] |
Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006 |
[9] |
Paul A. Glendinning, David J. W. Simpson. A constructive approach to robust chaos using invariant manifolds and expanding cones. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3367-3387. doi: 10.3934/dcds.2020409 |
[10] |
Gbeminiyi John Oyewole, Olufemi Adetunji. Solving the facility location and fixed charge solid transportation problem. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1557-1575. doi: 10.3934/jimo.2020034 |
[11] |
J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008 |
[12] |
Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069 |
[13] |
Lars Grüne, Luca Mechelli, Simon Pirkelmann, Stefan Volkwein. Performance estimates for economic model predictive control and their application in proper orthogonal decomposition-based implementations. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021013 |
[14] |
Demetres D. Kouvatsos, Jumma S. Alanazi, Kevin Smith. A unified ME algorithm for arbitrary open QNMs with mixed blocking mechanisms. Numerical Algebra, Control & Optimization, 2011, 1 (4) : 781-816. doi: 10.3934/naco.2011.1.781 |
[15] |
Xinfang Zhang, Jing Lu, Yan Peng. Decision framework for location and selection of container multimodal hubs: A case in china under the belt and road initiative. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021061 |
[16] |
Eduardo Casas, Christian Clason, Arnd Rösch. Preface special issue on system modeling and optimization. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021008 |
[17] |
Tadeusz Kaczorek, Andrzej Ruszewski. Analysis of the fractional descriptor discrete-time linear systems by the use of the shuffle algorithm. Journal of Computational Dynamics, 2021 doi: 10.3934/jcd.2021007 |
[18] |
Zheng Chang, Haoxun Chen, Farouk Yalaoui, Bo Dai. Adaptive large neighborhood search Algorithm for route planning of freight buses with pickup and delivery. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1771-1793. doi: 10.3934/jimo.2020045 |
[19] |
Haodong Chen, Hongchun Sun, Yiju Wang. A complementarity model and algorithm for direct multi-commodity flow supply chain network equilibrium problem. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2217-2242. doi: 10.3934/jimo.2020066 |
[20] |
Kazeem Olalekan Aremu, Chinedu Izuchukwu, Grace Nnenanya Ogwo, Oluwatosin Temitope Mewomo. Multi-step iterative algorithm for minimization and fixed point problems in p-uniformly convex metric spaces. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2161-2180. doi: 10.3934/jimo.2020063 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]