[1]
|
E.-H. Aghezzaf, A. Khatab and P. L. Tam, Optimizing production and imperfect preventive maintenance planning's integration in failure-prone manufacturing systems, Reliability Engineering & System Safety, 145 (2016), 190-198.
doi: 10.1016/j.ress.2015.09.017.
|
[2]
|
A. Arreola-Risa and M. F. Keblis, Design of stockless production systems, Production and Operations Management, 22 (2013), 203-215.
doi: 10.1111/j.1937-5956.2012.01343.x.
|
[3]
|
J.-B. Bacot and J. H. Dshalalow, A bulk input queueing system with batch gated service and multiple vacation policy, Mathematical and Computer Modelling, 34 (2001), 873-886.
doi: 10.1016/S0895-7177(01)00106-6.
|
[4]
|
A. D. Banik, The infinite-buffer single server queue with a variant of multiple vacation policy and batch {M}arkovian arrival process, Applied Mathematical Modelling, 33 (2009), 3025-3039.
doi: 10.1016/j.apm.2008.10.021.
|
[5]
|
A. D. Banik and S. K. Samanta, Controlling packet loss of bursty and correlated traffics in a variant of multiple vacation policy, in 2013 International Conference on Distributed Computing and Internet Technology (ICDCIT), Vol. 7753 of Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, 2013,208-219.
doi: 10.1007/978-3-642-36071-8_16.
|
[6]
|
R. Bellman, Introduction to Matrix Analysis, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1960.
|
[7]
|
F. Berthaut, A. Gharbi, J.-P. Kenné and J.-F. Boulet, Improved joint preventive maintenance and hedging point policy, International Journal of Production Economics, 127 (2010), 60-72.
doi: 10.1016/j.ijpe.2010.04.030.
|
[8]
|
B. Bouslah, A. Gharbi and R. Pellerin, Integrated production, sampling quality control and maintenance of deteriorating production systems with AOQL constraint, Omega, 61 (2016), 110-126.
doi: 10.1016/j.omega.2015.07.012.
|
[9]
|
B. Bouslah, A. Gharbi and R. Pellerin, Joint economic design of production, continuous sampling inspection and preventive maintenance of a deteriorating production system, International Journal of Production Economics, 173 (2016), 184-198.
doi: 10.1016/j.ijpe.2015.12.016.
|
[10]
|
L. Breuer and D. Baum, An Introduction to Queueing Theory and Matrix-Analytic Methods, Springer, Dordrecht, 2005.
|
[11]
|
J. Cao and W. Xie, Stability of a two-queue cyclic polling system with BMAPs under gated service and state-dependent time-limited service disciplines, Queueing Systems, 85 (2017), 117-147.
doi: 10.1007/s11134-016-9504-z.
|
[12]
|
A. Chelbi and N. Rezg, Analysis of a production/inventory system with randomly failing production unit subjected to a minimum required availability level, International Journal of Production Economics, 99 (2006), 131-143.
doi: 10.1016/j.ijpe.2004.12.012.
|
[13]
|
A. Chelbi, N. Rezg and M. Radhoui, Simultaneous determination of production lot size and preventive maintenance schedule for unreliable production system, Journal of Quality in Maintenance Engineering, 14 (2008), 161-176.
doi: 10.1108/13552510810877665.
|
[14]
|
E. Çinlar, Markov renewal theory, Advances in Applied Probability, 1 (1969), 123-187.
doi: 10.2307/1426216.
|
[15]
|
E. Çinlar, Introduction to Stochastic Processes, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1975.
|
[16]
|
D. Das, A. Roy and S. Kar, A volume flexible economic production lot-sizing problem with imperfect quality and random machine failure in fuzzy-stochastic environment, Computers & Mathematics with Applications, 61 (2011), 2388-2400.
doi: 10.1016/j.camwa.2011.02.015.
|
[17]
|
K. Dhouib, A. Gharbi and M. N. Ben Aziza, Joint optimal production control/preventive maintenance policy for imperfect process manufacturing cell, International Journal of Production Economics, 137 (2012), 126-136.
doi: 10.1016/j.ijpe.2012.01.023.
|
[18]
|
L. Doyen, Semi-parametric estimation of Brown-Proschan preventive maintenance effects and intrinsic wear-out, Computational Statistics & Data Analysis, 77 (2014), 206-222.
doi: 10.1016/j.csda.2014.02.022.
|
[19]
|
D. Gibson and E. Seneta, Monotone infinite stochastic matrices and their augmented truncations, Stochastic Processes and their Applications, 24 (1987), 287-292.
doi: 10.1016/0304-4149(87)90019-6.
|
[20]
|
W. K. Grassmann, M. I. Taksar and D. P. Heyman, Regenerative analysis and steady state distributions for Markov chains, Operations Research, 33 (1985), 1107-1116.
doi: 10.1287/opre.33.5.1107.
|
[21]
|
D. Gupta and S. Benjaafar, Make-to-order, make-to-stock, or delay product differentiation? A common framework for modeling and analysis, IIE Transactions, 36 (2004), 529-546.
doi: 10.1080/07408170490438519.
|
[22]
|
E. M. Jewkes and A. S. Alfa, A queueing model of delayed product differentiation, European Journal of Operational Research, 199 (2009), 734-743.
doi: 10.1016/j.ejor.2008.08.001.
|
[23]
|
Y. -L. Jin, Multi-objective optimization of flexible period preventive maintenance on a single machine, in 2012 International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering (ICQR2MSE), Chengdu, China, 2012,475-479.
doi: 10.1109/ICQR2MSE.2012.6246277.
|
[24]
|
V. V. Krivtsov, Recent advances in theory and applications of stochastic point process models in reliability engineering, Reliability Engineering & System Safety, 92 (2007), 549-551.
doi: 10.1016/j.ress.2006.05.001.
|
[25]
|
G.-L. Liao, Production and maintenance policies for an {EPQ} model with perfect repair, rework, free-repair warranty, and preventive maintenance, IEEE Transactions on Systems, Man, Cybernetics: Systems, 46 (2016), 1129-1139.
doi: 10.1109/TSMC.2015.2465961.
|
[26]
|
J. D. C. Little, A proof for the queuing formula: L = λW, Operations Research, 9 (1961), 383-387.
doi: 10.1287/opre.9.3.383.
|
[27]
|
C. Liu, Y. Fan, C. Zhao and J. Wang, Multiple common due-dates assignment and optimal maintenance activity scheduling with linear deteriorating jobs, Journal of Industrial & Management Optimization, 13 (2017), 713-720.
doi: 10.3934/jimo.2016042.
|
[28]
|
D. M. Lucantoni, New results on the single server queue with a bath Markovian arrival process, Stochastic Models, 7 (1991), 1-46.
doi: 10.1080/15326349108807174.
|
[29]
|
D. M. Lucantoni, K. S. Meier-Hellstern and M. F. Neuts, A single-server queue with server vacations and a class of non-renewal arrival processes, Advances in Applied Probability, 22 (1990), 676-705.
doi: 10.2307/1427464.
|
[30]
|
L. Mann, A. Saxena and G. M. Knapp, Statistical-based or condition-based preventive maintenance?, Journal of Quality in Maintenance Engineering, 1 (1995), 46-59.
doi: 10.1108/13552519510083156.
|
[31]
|
R. Mehdi, R. Nidhal and C. Anis, Integrated maintenance and control policy based on quality control, Computers & Industrial Engineering, 58 (2010), 443-451.
doi: 10.1016/j.cie.2009.11.002.
|
[32]
|
T. Nakagawa, Periodic and sequential preventive maintenance policies, Journal of Applied Probability, 23 (1986), 536-542.
doi: 10.2307/3214197.
|
[33]
|
M. F. Neuts, Matrix-geometric Solutions in Stochastic Models. An Algorithmic Approach, The Johns Hopkins University Press, Baltimore, 1981.
|
[34]
|
M. Radhoui, N. Rezg and A. Chelbi, Integrated model of preventive maintenance, quality control and buffer sizing for unreliable and imperfect production systems, International Journal of Production Research, 47 (2009), 389-402.
doi: 10.1080/00207540802426201.
|
[35]
|
V. Ramaswami, The N/G/1 queue and its detailed analysis, Advances in Applied Probability, 12 (1980), 222-261.
doi: 10.2307/1426503.
|
[36]
|
J. Schutz, N. Rezg and J.-B. Léger, Periodic and sequential preventive maintenance policies over a finite planning horizon with a dynamic failure law, Journal of Intelligent Manufacturing, 22 (2011), 523-532.
doi: 10.1007/s10845-009-0313-7.
|
[37]
|
M. Shahriari, N. Shoja, A. E. Zade, S. Barak and M. Sharifi, JIT single machine scheduling problem with periodic preventive maintenance, Journal of Industrial Engineering International, 12 (2016), 299-310.
doi: 10.1007/s40092-016-0147-9.
|
[38]
|
O. Tang, R. W. Grubbström and S. Zanoni, Planned lead time determination in a make-to-order remanufacturing system, International Journal of Production Economics, 108 (2007), 426-435.
doi: 10.1016/j.ijpe.2006.12.034.
|
[39]
|
V. M. Vishnevsky, A. N. Dudin, O. V. Semenova and V. I. Klimenok, Performance analysis of the BMAP/G/1 queue with gated servicing and adaptive vacations, Performance Evaluation, 68 (2011), 446-462.
doi: 10.1016/j.peva.2011.02.003.
|
[40]
|
H.-M. Wee, W.-T. Wang and P.-C. Yang, A production quantity model for imperfect quality items with shortage and screening constraint, International Journal of Production Research, 51 (2013), 1869-1884.
doi: 10.1080/00207543.2012.718453.
|
[41]
|
L. Xiao, S. Song, X. Chen and D. W. Coit, Joint optimization of production scheduling and machine group preventive maintenance, Reliability Engineering & System Safety, 146 (2016), 68-78.
doi: 10.1016/j.ress.2015.10.013.
|
[42]
|
K.-C. Ying, C.-C. Lu and J.-C. Chen, Exact algorithms for single-machine scheduling problems with a variable maintenance, Computers & Industrial Engineering, 98 (2016), 427-433.
doi: 10.1016/j.cie.2016.05.037.
|
[43]
|
W. Zhou, R. Zhang and Y. Zhou, A queuing model on supply chain with the form postponement strategy, Computers & Industrial Engineering, 66 (2013), 643-652.
doi: 10.1016/j.cie.2013.09.022.
|