[1]
|
R. Ahuja, T. Magnanti and J. Orlin, Network Flows: Theory, Algorithms, and Applications, PrenticeHall, Upper Saddle River, NJ, 1993.
doi: 10.21236/ADA594171.
|
[2]
|
R. K. Ahuja, K. Mehlhorn, J. Orlin and R. E. Tarjan, Faster algorithms for the shortest path problem, Journal of the ACM (JACM), 37 (1990), 213-223.
doi: 10.1145/77600.77615.
|
[3]
|
Y. Bachrach and E. Porat, Path disruption games, In Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems, volume 1-Volume 1 (pp. 1123-1130). International Foundation for Autonomous Agents and Multiagent Systems, (2010, May).
|
[4]
|
Z. Barzily, Z. Volkovich, B. Akteke-Öztürk and G. W. Weber, On a minimal spanning tree approach in the cluster validation problem, Informatica, 20 (2009), 187-202.
|
[5]
|
R. Bellman, On a Routing Problem (No. RAND-P-1000), Rand Corp Santa Monica Ca, 1956.
|
[6]
|
P. Borm, H. Hamers and R. Hendrickx, Operations research games: A survey, TOP, 9 (2001), 139-199.
doi: 10.1007/BF02579075.
|
[7]
|
R. Branzei, D. Dimitrov and S. Tijs, Models in Cooperative Game Theory: Crisp, Fuzzy And Multi-Choice Games, In: Lecture notes in economics and mathematical systems, Springer, Berlin, vol 556, 2005.
|
[8]
|
T. S. Chandrashekar and Y. Narahari, Economic mechanisms for shortest path cooperative games with incomplete information, In Internet and Network Economics, Springer Berlin Heidelberg, (2005), 70-79.
|
[9]
|
J. H. Chang and L. Tassiulas, Energy conserving routing in wireless ad-hoc networks, In INFOCOM 2000, Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies, Proceedings, IEEE, 1 (2000), 22-31.
|
[10]
|
B. Chen, K. Jamieson, H. Balakrishnan and R. Morris, Span: An energy-efficient coordination algorithm for topology maintenance in ad hoc wireless networks, MobiCom '01 Proceedings of the 7th Annual International Conference on Mobile Computing and Networking, (2001), 85-96.
doi: 10.1145/381677.381686.
|
[11]
|
S. M. Choi, X. Huang and W. K. Ching, Minimizing equilibrium expected sojourn time via performance-based mixed threshold demand allocation in a multiple-server queueing environment, Journal of Industrial and Management Optimization, 8 (2012), 299-323.
doi: 10.3934/jimo.2012.8.299.
|
[12]
|
R. B. Dial, Algorithm 360: Shortest-path forest with topological ordering [H], Communications of the ACM, 12 (1969), 632-633.
doi: 10.1145/363269.363610.
|
[13]
|
E. W. Dijkstra, A note on two problems in connection with graph, Numer. Math., 1 (1959), 269-271.
doi: 10.1007/BF01386390.
|
[14]
|
T. S. Driessen, A survey of consistency properties in cooperative game theory, SIAM review, 33 (1991), 43-59.
doi: 10.1137/1033003.
|
[15]
|
J. Feigenbaum, C. Papadimitriou, R. Sami and S. Shenker, A BGP-based mechanism for lowest-cost routing, PODC '02 Proceedings of the Twenty-First Annual Symposium on Principles of Distributed Computing, (2002), 173-182.
doi: 10.1145/571825.571856.
|
[16]
|
L. R. Ford and D. R. Fulkerson, Flows in Networks, Princeton University Press, Princeton, N. J., 1962.
|
[17]
|
V. Fragnelli, I. García-Jurado and L. Méndez-Naya, On shortest path games, Mathematical Methods of Operations Research, 52 (2000), 251-264.
doi: 10.1007/s001860000061.
|
[18]
|
M. L. Fredman and R. E. Tarjan, Fibonacci heaps and their uses in improved network optimization algorithms, Journal of the ACM (JACM), 34 (1987), 596-615.
doi: 10.1145/28869.28874.
|
[19]
|
H. N. Gabow and R. E. Tarjan, Faster scaling algorithms for network problems, SIAM Journal on Computing, 18 (1989), 1013-1036.
doi: 10.1137/0218069.
|
[20]
|
G. Gallo and S. Pallottino, Shortest path algorithms, Annals of Operations Research, 13 (1988), 1-79.
doi: 10.1007/BF02288320.
|
[21]
|
J. Gebert, M. Lätsch, E. M. P. Quek and G. W. Weber, Analyzing and optimizing genetic network structure via path-finding Journal of Computational Technologies, 9 (2004).
|
[22]
|
A. V. Goldberg, Scaling algorithms for the shortest paths problem, SIAM Journal on Computing, 24 (1995), 494-504.
doi: 10.1137/S0097539792231179.
|
[23]
|
J. Hershberger, J., S. Suri and V. Prices, Shortest Paths: What is an edge worth?, 42nd IEEE Symposium on Foundations of Computer Science (Las Vegas, NV, 2001), IEEE Computer Soc., Los Alamitos, CA, (2001), 252-259.
|
[24]
|
E. Kalai and E. Zemel, Generalized network problems yielding totally balanced games, Operations Research, 30 (1982), 998-1008.
doi: 10.1287/opre.30.5.998.
|
[25]
|
E. Kalai and E. Zemel, Totally balanced games and games of flow, Mathematics of Operations Research, 7 (1982), 476-478.
doi: 10.1287/moor.7.3.476.
|
[26]
|
J. Leino, Applications of Game Theory in Ad Hoc Networks, Master's Thesis, Department of Engineering Physics and Mathematics, Helsinki University of Technology, (2003).
|
[27]
|
W. Liang, Constructing minimum-energy broadcast trees in wireless ad hoc networks, Proceedings of the 3rd ACM international symposium on Mobile ad hoc networking & computing, (2002), 112-122.
doi: 10.1145/513800.513815.
|
[28]
|
A. B. MacKenzie and L. A. DaSilva, Game theory for wireless engineers, Synthesis Lectures on Communications, 1 (2006), 1-86.
doi: 10.2200/S00014ED1V01Y200508COM001.
|
[29]
|
N. Megiddo, Computational complexity of the game theory approach to cost allocation for a tree, Mathematics of Operations Research, 3 (1978), 189-196.
doi: 10.1287/moor.3.3.189.
|
[30]
|
S. Mehta and K. S. Kwak, Application of Game Theory to Wireless Networks, Convergence and Hybrid Information Technologies: InTech, 2010.
doi: 10.5772/9642.
|
[31]
|
S. Moretti, S. Z. A. Gök, R. Branzei and S. Tijs, Connection situations under uncertainty and cost monotonic solutions, Computers & Operations Research, 38 (2011), 1638-1645.
doi: 10.1016/j.cor.2011.02.004.
|
[32]
|
F. Nebel, Shortest Path Games: Computational Complexity of Solution Concepts, PhD Thesis, Universiteit van Amsterdam, 2010.
|
[33]
|
N. Nisan and A. Ronen, Algorithmic mechanism design, Annual ACM Symposium on Theory of Computing (Atlanta, GA, 1999), ACM, New York, (1999), 129-140.
doi: 10.1145/301250.301287.
|
[34]
|
R. C. Prim, Shortest connection networks and some generalizations, Bell System Technical Journal, 36 (1957), 1389-1401.
|
[35]
|
H. Reijnierse, M. Maschler, J. Potters and S. Tijs, Simple flow games, Games and Economic Behavior, 16 (1996), 238-260.
doi: 10.1006/game.1996.0085.
|
[36]
|
F. Schulz, D. Wagner and K. Weihe, Dijkstra's algorithm on-line: An empirical case study from public railroad transport, Journal of Experimental Algorithmics (JEA), 5 (2000), Special Issue 2, 23 pp.
doi: 10.1145/351827.384254.
|
[37]
|
F. Sha, D. Han and W. Zhong, Bounds on price of anarchy on linear cost functions, Journal of Industrial & Management Optimization, 11 (2015), 1165-1173.
doi: 10.3934/jimo.2015.11.1165.
|
[38]
|
R. C. Shah and J. M. Rabaey, Energy aware routing for low energy ad hoc sensor networks, Wireless Communications and Networking Conference, 2002. WCNC2002. IEEE, 1 (2002), 350-355.
|
[39]
|
L. S. Shapley, A value for n-person games, Annals of Mathematics Studies, 28 (1953), 307-317.
|
[40]
|
J. C. Smith and C. Lim, Algorithms for network interdiction and fortification games, Pareto Optimality, Game Theory and Equilibria, 17 (2008), 609-644.
doi: 10.1007/978-0-387-77247-9_24.
|
[41]
|
V. Srivastava, J. Neel, A. B. MacKenzie, R. Menon, L. A. DaSilva, E. H. Hick, J. H. Reed and R. P. Gilles, Using game theory to analyze wireless ad hoc networks, IEEE Communications Surveys and Tutorials, 7 (2005), 46-56.
|
[42]
|
S. Tijs, Introduction to Game Theory, SIAM Hindustan Book Agency, India, 2003.
|
[43]
|
C. K. Toh, Maximum battery life routing to support ubiquitous mobile computing in wireless ad hoc networks, Communications Magazine, IEEE, 39 (2001), 138-147.
|
[44]
|
University of Waterloo, Combinatorics & Optimization. Discrete Optimization research group, https://math.uwaterloo.ca/combinatorics-and-optimization/research/areas/discrete-optimization.
|
[45]
|
M. Voorneveld and S. Grahn, Cost allocation in shortest path games, Mathematical methods of operations research, 56 (2002), 323-340.
doi: 10.1007/s001860200222.
|
[46]
|
M. H. Xu, Y. Q. Liu, Q. L. Huang, Y. X. Zhang and G. F. Luan, An improved Dijkstra's shortest path algorithm for sparse network, Applied Mathematics and Computation, 185 (2007), 247-254.
doi: 10.1016/j.amc.2006.06.094.
|
[47]
|
Y. Zhao, S. Jin and W. Yue, Adjustable admission control with threshold in centralized CR
networks: Analysis and optimization, Journal of Industrial & Management Optimization, 11 (2015), 1393-1408.
doi: 10.3934/jimo.2015.11.1393.
|
[48]
|
L. Zhou, A new bargaining set of an n-person game and endogenous coalition formation, Games and Economic Behavior, 6 (1994), 512-526.
doi: 10.1006/game.1994.1030.
|