\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Performance analysis of a cooperative flow game algorithm in ad hoc networks and a comparison to Dijkstra's algorithm

  • * Corresponding author: Serap Ergün

    * Corresponding author: Serap Ergün 
Abstract / Introduction Full Text(HTML) Figure(4) / Table(5) Related Papers Cited by
  • The aim of this study is to provide a mathematical framework for studying node cooperation, and to define strategies leading to optimal node behaviour in ad hoc networks. In this study we show time performances of three different methods, namely, Dijkstra's algorithm, Dijkstra's algorithm with battery times and cooperative flow game algorithm constructed from a flow network model. There are two main outcomes of this study regarding the shortest path problem which is that of finding a path of minimum length between two distinct vertices in a network. The first one finds out which method gives better results in terms of time while finding the shortest path, the second one considers the battery life of wireless devices on the network to determine the remaining nodes on the network. Further, optimization performances of the methods are examined in finding the shortest path problem. The study shows that the battery times play an important role in network routing and more devices provided to keep the network. To view the time performance analysis of the methods MATLAB is used. Also, considering the cooperation between the nodes, it is envisaged that using cooperative game theory brings a new approach to network traffic engineering and routing methods.

    Mathematics Subject Classification: Primary: 91A80, 90B18; Secondary: 68W40.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  An ad hoc network

    Figure 2.  The network example

    Figure 3.  Time Performances of three algorithms

    Figure 4.  The lifetime of the nodes

    Table 1.  The pseudo code of Dijkstra's Algorithm

    1 function Dijkstra(Graph, source):
    2 dist[source] := 0 // Distance from source to source
    3 for each vertex v in Graph: // Initializations
    4 if v $\mathit{\boldsymbol{\neq}}$ source
    5 dist[v] := infinity // Unknown distance function from source to v
    6 previous[v] := undefined // Previous node in optimal path from source
    7 end if
    8 add v to Q // All nodes initially in Q (unvisited nodes)
    9 end for
    10
    11 while Q is not empty: // The main loop
    12 u := vertex in Q with min dist[u] // Source node in first case
    13 remove u from Q
    14
    15 for each neighbor v of u: // where v has not yet been removed from Q.
    16 alt := dist[u] + length(u, v)
    17 if alt $<$ dist[v]: // A shorter path to v has been found
    18 dist[v] := alt
    19 previous[v] := u
    20 end if
    21 end for
    22 end while
    23 return dist[], previous[]
    24 end function
     | Show Table
    DownLoad: CSV

    Table 2.  The pseudo code of Dijkstra's Algorithm with Battery Times

    1 function DijkstraBatteryTime(Graph, source):
    2 dist[source] := 0 // Distance from source to source
    3 for each vertex v in Graph: // Initializations
    4 if v $\mathit{\boldsymbol{\neq }}$ source
    5 dist[v] := infinity // Unknown distance function from source to v
    6 previous[v] := undefined // Previous node in optimal path from source
    7 end if
    8 add v to Q // All nodes initially in Q (unvisited nodes)
    9 end for
    10 while Q is not empty: // The main loop
    11 u := vertex in Q with min dist[u] // Source node in first case
    12 remove u from Q
    13 for each neighbor v of u: // where v has not yet been removed from Q.
    14 alt := dist[u] + length(u, v)
    15 battime:=dist[u]+length(u, v)
    16 if alt $<$ dist[v]: // A shorter path to v has been found
    17 if battime$<$dist[v:] // A shorter path to v has been found
    18 dist[v]:=battime
    19 previous [v]:=u
    20 dist[v] := alt
    21 previous[v] := u
    22 end if
    23 end if
    24 end for
    25 end while
    26 return dist[], previous[]
    27 end function
     | Show Table
    DownLoad: CSV

    Table 3.  The pseudo code of cooperative flow game algorithm

    1 function CooperativeFlowGame(Graph, source):
    2 dist[source] := 0 // Distance from source to source
    3 for each vertex v in Graph: // Initializations
    4 if v $\mathit{\boldsymbol{\neq }}$ source
    5 dist[v] := infinity // Unknown distance function from source to v
    6 previous[v] := undefined // Previous node in optimal path from source
    7 end if
    8 add v to Q // All nodes initially in Q (unvisited nodes)
    9 end for
    10 subset[vs]; // Calculate all the subset's (coalitions) values
    11 while Q is not empty: // The main loop
    12 u := vertex in Q with min dist[u] // Source node in first case
    13 remove u from Q
    14 for each coalition vs of u: // where vs has not yet been removed from Q.
    15 alt := dist[u] + length(u, vs)
    16 if alt $<$ dist[vs]: // A shorter path to vs has been found
    17 dist[vs] := alt // Choose this coalition
    18 previous[vs] := u
    19 end if
    20 end for
    21 end while
    22 return dist[], previous[]
    23 end function
     | Show Table
    DownLoad: CSV

    Table 4.  The marginal vectors of the cooperative flow game

    $\sigma $ $m_{1}^{\sigma }$ $m_{2}^{\sigma }$ $m_{3}^{\sigma }$ $ m_{4}^{\sigma }$
    $\sigma _{1}=(1, 2, 3, 4)$ $0$ $0$ $0$ $12$
    $\sigma _{2}=(1, 2, 4, 3)$ $0$ $0$ $12$ $0$
    $\sigma _{3}=(1, 3, 2, 4)$ $0$ $0$ $0$ $12$
    $\sigma _{4}=(1, 3, 4, 2)$ $0$ $7$ $0$ $5$
    $\sigma _{5}=(1, 4, 2, 3)$ $0$ $0$ $12$ $0$
    $\sigma _{6}=(1, 4, 3, 2)$ $0$ $7$ $5$ $0$
    $\sigma _{7}=(2, 1, 3, 4)$ $0$ $0$ $0$ $12$
    $\sigma _{8}=(2, 1, 4, 3)$ $0$ $0$ $12$ $0$
    $\sigma _{9}=(2, 3, 1, 4)$ $0$ $0$ $0$ $12$
    $\sigma _{10}=(2, 3, 4, 1)$ $5$ $0$ $0$ $7$
    $\sigma _{11}=(2, 4, 1, 3)$ $0$ $0$ $12$ $0$
    $\sigma _{12}=(2, 4, 3, 1)$ $5$ $0$ $7$ $0$
    $\sigma _{13}=(3, 1, 2, 4)$ $0$ $0$ $0$ $12$
    $\sigma _{14}=(3, 1, 4, 2)$ $0$ $7$ $0$ $5$
    $\sigma _{15}=(3, 2, 1, 4)$ $0$ $0$ $0$ $12$
    $\sigma _{16}=(3, 2, 4, 1)$ $5$ $0$ $0$ $7$
    $\sigma _{17}=(3, 4, 1, 2)$ $-1$ $7$ $0$ $6$
    $\sigma _{18}=(3, 4, 2, 1)$ $5$ $1$ $0$ $6$
    $\sigma _{19}=(4, 1, 2, 3)$ $0$ $0$ $12$ $0$
    $\sigma _{20}=(4, 1, 3, 2)$ $0$ $7$ $5$ $0$
    $\sigma _{21}=(4, 2, 1, 3)$ $0$ $0$ $12$ $0$
    $\sigma _{22}=(4, 2, 3, 1)$ $5$ $0$ $7$ $0$
    $\sigma _{23}=(4, 3, 1, 2)$ $-1$ $7$ $6$ $0$
    $\sigma _{24}=(4, 3, 2, 1)$ $5$ $1$ $6$ $0$
     | Show Table
    DownLoad: CSV

    Table 5.  The comparision of three methods

    Time performances * $CFGA\ <DA\ <DWBT$
    Lifetime of nodes ** $CFGA\ >DWBT>DA$
     | Show Table
    DownLoad: CSV
  • [1] R. Ahuja, T. Magnanti and J. Orlin, Network Flows: Theory, Algorithms, and Applications, PrenticeHall, Upper Saddle River, NJ, 1993. doi: 10.21236/ADA594171.
    [2] R. K. AhujaK. MehlhornJ. Orlin and R. E. Tarjan, Faster algorithms for the shortest path problem, Journal of the ACM (JACM), 37 (1990), 213-223.  doi: 10.1145/77600.77615.
    [3] Y. Bachrach and E. Porat, Path disruption games, In Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems, volume 1-Volume 1 (pp. 1123-1130). International Foundation for Autonomous Agents and Multiagent Systems, (2010, May).
    [4] Z. BarzilyZ. VolkovichB. Akteke-Öztürk and G. W. Weber, On a minimal spanning tree approach in the cluster validation problem, Informatica, 20 (2009), 187-202. 
    [5] R. Bellman, On a Routing Problem (No. RAND-P-1000), Rand Corp Santa Monica Ca, 1956.
    [6] P. BormH. Hamers and R. Hendrickx, Operations research games: A survey, TOP, 9 (2001), 139-199.  doi: 10.1007/BF02579075.
    [7] R. Branzei, D. Dimitrov and S. Tijs, Models in Cooperative Game Theory: Crisp, Fuzzy And Multi-Choice Games, In: Lecture notes in economics and mathematical systems, Springer, Berlin, vol 556, 2005.
    [8] T. S. Chandrashekar and Y. Narahari, Economic mechanisms for shortest path cooperative games with incomplete information, In Internet and Network Economics, Springer Berlin Heidelberg, (2005), 70-79.
    [9] J. H. Chang and L. Tassiulas, Energy conserving routing in wireless ad-hoc networks, In INFOCOM 2000, Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies, Proceedings, IEEE, 1 (2000), 22-31.
    [10] B. ChenK. JamiesonH. Balakrishnan and R. Morris, Span: An energy-efficient coordination algorithm for topology maintenance in ad hoc wireless networks, MobiCom '01 Proceedings of the 7th Annual International Conference on Mobile Computing and Networking, (2001), 85-96.  doi: 10.1145/381677.381686.
    [11] S. M. ChoiX. Huang and W. K. Ching, Minimizing equilibrium expected sojourn time via performance-based mixed threshold demand allocation in a multiple-server queueing environment, Journal of Industrial and Management Optimization, 8 (2012), 299-323.  doi: 10.3934/jimo.2012.8.299.
    [12] R. B. Dial, Algorithm 360: Shortest-path forest with topological ordering [H], Communications of the ACM, 12 (1969), 632-633.  doi: 10.1145/363269.363610.
    [13] E. W. Dijkstra, A note on two problems in connection with graph, Numer. Math., 1 (1959), 269-271.  doi: 10.1007/BF01386390.
    [14] T. S. Driessen, A survey of consistency properties in cooperative game theory, SIAM review, 33 (1991), 43-59.  doi: 10.1137/1033003.
    [15] J. FeigenbaumC. PapadimitriouR. Sami and S. Shenker, A BGP-based mechanism for lowest-cost routing, PODC '02 Proceedings of the Twenty-First Annual Symposium on Principles of Distributed Computing, (2002), 173-182.  doi: 10.1145/571825.571856.
    [16] L. R. Ford and D. R. Fulkerson, Flows in Networks, Princeton University Press, Princeton, N. J., 1962.
    [17] V. FragnelliI. García-Jurado and L. Méndez-Naya, On shortest path games, Mathematical Methods of Operations Research, 52 (2000), 251-264.  doi: 10.1007/s001860000061.
    [18] M. L. Fredman and R. E. Tarjan, Fibonacci heaps and their uses in improved network optimization algorithms, Journal of the ACM (JACM), 34 (1987), 596-615.  doi: 10.1145/28869.28874.
    [19] H. N. Gabow and R. E. Tarjan, Faster scaling algorithms for network problems, SIAM Journal on Computing, 18 (1989), 1013-1036.  doi: 10.1137/0218069.
    [20] G. Gallo and S. Pallottino, Shortest path algorithms, Annals of Operations Research, 13 (1988), 1-79.  doi: 10.1007/BF02288320.
    [21] J. Gebert, M. Lätsch, E. M. P. Quek and G. W. Weber, Analyzing and optimizing genetic network structure via path-finding Journal of Computational Technologies, 9 (2004).
    [22] A. V. Goldberg, Scaling algorithms for the shortest paths problem, SIAM Journal on Computing, 24 (1995), 494-504.  doi: 10.1137/S0097539792231179.
    [23] J. Hershberger, J., S. Suri and V. Prices, Shortest Paths: What is an edge worth?, 42nd IEEE Symposium on Foundations of Computer Science (Las Vegas, NV, 2001), IEEE Computer Soc., Los Alamitos, CA, (2001), 252-259.
    [24] E. Kalai and E. Zemel, Generalized network problems yielding totally balanced games, Operations Research, 30 (1982), 998-1008.  doi: 10.1287/opre.30.5.998.
    [25] E. Kalai and E. Zemel, Totally balanced games and games of flow, Mathematics of Operations Research, 7 (1982), 476-478.  doi: 10.1287/moor.7.3.476.
    [26] J. Leino, Applications of Game Theory in Ad Hoc Networks, Master's Thesis, Department of Engineering Physics and Mathematics, Helsinki University of Technology, (2003).
    [27] W. Liang, Constructing minimum-energy broadcast trees in wireless ad hoc networks, Proceedings of the 3rd ACM international symposium on Mobile ad hoc networking & computing, (2002), 112-122.  doi: 10.1145/513800.513815.
    [28] A. B. MacKenzie and L. A. DaSilva, Game theory for wireless engineers, Synthesis Lectures on Communications, 1 (2006), 1-86.  doi: 10.2200/S00014ED1V01Y200508COM001.
    [29] N. Megiddo, Computational complexity of the game theory approach to cost allocation for a tree, Mathematics of Operations Research, 3 (1978), 189-196.  doi: 10.1287/moor.3.3.189.
    [30] S. Mehta and K. S. Kwak, Application of Game Theory to Wireless Networks, Convergence and Hybrid Information Technologies: InTech, 2010. doi: 10.5772/9642.
    [31] S. MorettiS. Z. A. GökR. Branzei and S. Tijs, Connection situations under uncertainty and cost monotonic solutions, Computers & Operations Research, 38 (2011), 1638-1645.  doi: 10.1016/j.cor.2011.02.004.
    [32] F. Nebel, Shortest Path Games: Computational Complexity of Solution Concepts, PhD Thesis, Universiteit van Amsterdam, 2010.
    [33] N. Nisan and A. Ronen, Algorithmic mechanism design, Annual ACM Symposium on Theory of Computing (Atlanta, GA, 1999), ACM, New York, (1999), 129-140. doi: 10.1145/301250.301287.
    [34] R. C. Prim, Shortest connection networks and some generalizations, Bell System Technical Journal, 36 (1957), 1389-1401. 
    [35] H. ReijnierseM. MaschlerJ. Potters and S. Tijs, Simple flow games, Games and Economic Behavior, 16 (1996), 238-260.  doi: 10.1006/game.1996.0085.
    [36] F. Schulz, D. Wagner and K. Weihe, Dijkstra's algorithm on-line: An empirical case study from public railroad transport, Journal of Experimental Algorithmics (JEA), 5 (2000), Special Issue 2, 23 pp. doi: 10.1145/351827.384254.
    [37] F. ShaD. Han and W. Zhong, Bounds on price of anarchy on linear cost functions, Journal of Industrial & Management Optimization, 11 (2015), 1165-1173.  doi: 10.3934/jimo.2015.11.1165.
    [38] R. C. Shah and J. M. Rabaey, Energy aware routing for low energy ad hoc sensor networks, Wireless Communications and Networking Conference, 2002. WCNC2002. IEEE, 1 (2002), 350-355. 
    [39] L. S. Shapley, A value for n-person games, Annals of Mathematics Studies, 28 (1953), 307-317. 
    [40] J. C. Smith and C. Lim, Algorithms for network interdiction and fortification games, Pareto Optimality, Game Theory and Equilibria, 17 (2008), 609-644.  doi: 10.1007/978-0-387-77247-9_24.
    [41] V. SrivastavaJ. NeelA. B. MacKenzieR. MenonL. A. DaSilvaE. H. HickJ. H. Reed and R. P. Gilles, Using game theory to analyze wireless ad hoc networks, IEEE Communications Surveys and Tutorials, 7 (2005), 46-56. 
    [42] S. Tijs, Introduction to Game Theory, SIAM Hindustan Book Agency, India, 2003.
    [43] C. K. Toh, Maximum battery life routing to support ubiquitous mobile computing in wireless ad hoc networks, Communications Magazine, IEEE, 39 (2001), 138-147. 
    [44] University of Waterloo, Combinatorics & Optimization. Discrete Optimization research group, https://math.uwaterloo.ca/combinatorics-and-optimization/research/areas/discrete-optimization.
    [45] M. Voorneveld and S. Grahn, Cost allocation in shortest path games, Mathematical methods of operations research, 56 (2002), 323-340.  doi: 10.1007/s001860200222.
    [46] M. H. XuY. Q. LiuQ. L. HuangY. X. Zhang and G. F. Luan, An improved Dijkstra's shortest path algorithm for sparse network, Applied Mathematics and Computation, 185 (2007), 247-254.  doi: 10.1016/j.amc.2006.06.094.
    [47] Y. ZhaoS. Jin and W. Yue, Adjustable admission control with threshold in centralized CR networks: Analysis and optimization, Journal of Industrial & Management Optimization, 11 (2015), 1393-1408.  doi: 10.3934/jimo.2015.11.1393.
    [48] L. Zhou, A new bargaining set of an n-person game and endogenous coalition formation, Games and Economic Behavior, 6 (1994), 512-526.  doi: 10.1006/game.1994.1030.
  • 加载中

Figures(4)

Tables(5)

SHARE

Article Metrics

HTML views(4121) PDF downloads(477) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return