• Previous Article
    Single-machine bi-criterion scheduling with release times and exponentially time-dependent learning effects
  • JIMO Home
  • This Issue
  • Next Article
    Performance analysis of a cooperative flow game algorithm in ad hoc networks and a comparison to Dijkstra's algorithm
July  2019, 15(3): 1101-1116. doi: 10.3934/jimo.2018087

Unified optimality conditions for set-valued optimizations

College of Mathematics and Statistics, Chongqing University, Chongqing, 401331, China

* Corresponding author: Sheng-Jie Li

Received  July 2016 Revised  May 2017 Published  July 2018

Fund Project: This research was supported by the National Natural Science Foundation of China (Grant numbers: 11171362, 11571055).

This paper is devoted to the study of unified optimality conditions for constrained set-valued optimization problems via image space analysis. Necessary and sufficient optimality conditions are given in terms of tangent cones of extended image set. By exploiting such results, we analyse the optimality conditions employing different generalized derivatives.

Citation: Geng-Hua Li, Sheng-Jie Li. Unified optimality conditions for set-valued optimizations. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1101-1116. doi: 10.3934/jimo.2018087
References:
[1]

J. P. Aubin and H. Frankowska, Set-valued Analysis, Birkhauser, Boston, 1990. doi: 10.1007/978-0-8176-4848-0.  Google Scholar

[2]

G. Bigi and M. Castellani, K-epiderivatives for set-valued function and optimization, Math. Methods, 55 (2002), 401-412.  doi: 10.1007/s001860200187.  Google Scholar

[3]

G. Castellani and F. Giannessi, Decomposition of mathematical programs by means of theorems of alternative for linear and nonlinear systems, In Proc. Ninth Internat. Math. Programming Sympos., Budapest. Survey of Mathematical Programming, North-Holland, Amsterdam, 2 (1979), 423-439.  Google Scholar

[4]

M. Chinaie and J. Zafarani, A new approach to constrained optimization via image space analysis, Positivity, 20 (2016), 99-114.  doi: 10.1007/s11117-015-0343-7.  Google Scholar

[5]

H. W. Corley, Optimality conditions for maximizations of set-valued functions, J. Optim. Theory Appl., 58 (1988), 1-10.  doi: 10.1007/BF00939767.  Google Scholar

[6]

G. P. CrespiI. Ginchev and M. Rocca, First-order optimality conditions in set-valued optimization, Math. Methods Oper. Res., 63 (2006), 87-106.  doi: 10.1007/s00186-005-0023-7.  Google Scholar

[7]

F. Giannessi, Theorems of the alternative and optimality conditions, J. Optim. Theory Appl., 42 (1984), 331-365.  doi: 10.1007/BF00935321.  Google Scholar

[8]

F. Giannessi, G. Mastroeni and L. Pellegrini, On the theory of vector optimization and variational inequalities image space analysis and separation, in Vector Variational Inequalities and Vector Equilibria, Mathematical Theories (eds F. Giannessi), Kluwer Academic, Dordrecht, 38 (2000), 153-215. doi: 10.1007/978-1-4613-0299-5_11.  Google Scholar

[9]

F. Giannessi, Constrained Optimization and Image Space Analysis, vol. 1: Separation of Sets and Optimality Conditions, Springer, New York, 2005. doi: 10.1007/0-387-28020-0.  Google Scholar

[10]

A. Götz and J. Jahn, The Lagrange multiplier rule in set-valued optimization, SIAM J. Optim., 10 (2000), 331-344.  doi: 10.1137/S1052623496311697.  Google Scholar

[11]

J. Jahn and R. Rauh, Contingent epiderivatives and set-valued optimization, Math. Methods Oper. Res., 46 (1997), 193-211.  doi: 10.1007/BF01217690.  Google Scholar

[12]

J. Jahn and A. A. Khan, Generalized contingent epiderivatives in set-valued optimization: optimality conditions, Numer. Funct. Anal. Optim., 23 (2002), 807-831.  doi: 10.1081/NFA-120016271.  Google Scholar

[13]

J. Jahn, Vector Optimization. Theory, Applications, and Extensions, Springer, Berlin, 2004. doi: 10.1007/978-3-540-24828-6.  Google Scholar

[14]

A. A. Khan, C. Tammer and C. Zǎlinescu, Set-valued Optimization. An Introduction with Applications, Springer, Heidelberg, 2015. doi: 10.1007/978-3-642-54265-7.  Google Scholar

[15]

J. LiS. Q. Feng and Z. Zhang, A unified approach for constrained extremum problems: Image space analysis, J. Optim. Theory Appl., 159 (2013), 69-92.  doi: 10.1007/s10957-013-0276-x.  Google Scholar

[16]

D. T. Luc, Theory of Vector Optimization, Springer, Berlin, 1989. doi: 10.1007/978-3-642-50280-4.  Google Scholar

[17]

D. T. Luc, Contingent derivatives of set-valued maps and applications to vector optimization, Math. Program., 50 (1991), 99-111.  doi: 10.1007/BF01594928.  Google Scholar

[18]

A. Moldovan and L. Pellegrini, On regularity for constrained extremum problems. Part1: Sufficient optimality conditions, J. Optim. Theory Appl., 142 (2009), 147-163.  doi: 10.1007/s10957-009-9518-3.  Google Scholar

[19]

A. Moldovan and L. Pellegrini, On regularity for constrained extremum problems. Part 2: Necessary optimality conditions, J. Optim. Theory Appl., 142 (2009), 165-183.  doi: 10.1007/s10957-009-9521-8.  Google Scholar

[20]

A. Taa, Optimality conditions for vector mathematical programming via a theorem of the alternative, J. Math. Anal. Appl., 233 (1999), 233-245.  doi: 10.1006/jmaa.1999.6288.  Google Scholar

[21]

S. K. Zhu and S. J. Li, Unified duality theory for constrained extremum problems. Part Ⅰ: image space analysis, J. Optim. Theory Appl., 161 (2014), 738-762.  doi: 10.1007/s10957-013-0468-4.  Google Scholar

[22]

S. K. Zhu and S. J. Li, Unified duality theory for constrained extremum problems. Part Ⅱ: Special duality schemes, J. Optim. Theory Appl., 161 (2014), 763-782.  doi: 10.1007/s10957-013-0467-5.  Google Scholar

[23]

S. K. ZhuS. J. Li and K. L. Teo, Second-order Karush-Kuhn-Tucker optimality conditions for set-valued optimization, J. Glob. Optim., 58 (2014), 673-692.  doi: 10.1007/s10898-013-0067-9.  Google Scholar

show all references

References:
[1]

J. P. Aubin and H. Frankowska, Set-valued Analysis, Birkhauser, Boston, 1990. doi: 10.1007/978-0-8176-4848-0.  Google Scholar

[2]

G. Bigi and M. Castellani, K-epiderivatives for set-valued function and optimization, Math. Methods, 55 (2002), 401-412.  doi: 10.1007/s001860200187.  Google Scholar

[3]

G. Castellani and F. Giannessi, Decomposition of mathematical programs by means of theorems of alternative for linear and nonlinear systems, In Proc. Ninth Internat. Math. Programming Sympos., Budapest. Survey of Mathematical Programming, North-Holland, Amsterdam, 2 (1979), 423-439.  Google Scholar

[4]

M. Chinaie and J. Zafarani, A new approach to constrained optimization via image space analysis, Positivity, 20 (2016), 99-114.  doi: 10.1007/s11117-015-0343-7.  Google Scholar

[5]

H. W. Corley, Optimality conditions for maximizations of set-valued functions, J. Optim. Theory Appl., 58 (1988), 1-10.  doi: 10.1007/BF00939767.  Google Scholar

[6]

G. P. CrespiI. Ginchev and M. Rocca, First-order optimality conditions in set-valued optimization, Math. Methods Oper. Res., 63 (2006), 87-106.  doi: 10.1007/s00186-005-0023-7.  Google Scholar

[7]

F. Giannessi, Theorems of the alternative and optimality conditions, J. Optim. Theory Appl., 42 (1984), 331-365.  doi: 10.1007/BF00935321.  Google Scholar

[8]

F. Giannessi, G. Mastroeni and L. Pellegrini, On the theory of vector optimization and variational inequalities image space analysis and separation, in Vector Variational Inequalities and Vector Equilibria, Mathematical Theories (eds F. Giannessi), Kluwer Academic, Dordrecht, 38 (2000), 153-215. doi: 10.1007/978-1-4613-0299-5_11.  Google Scholar

[9]

F. Giannessi, Constrained Optimization and Image Space Analysis, vol. 1: Separation of Sets and Optimality Conditions, Springer, New York, 2005. doi: 10.1007/0-387-28020-0.  Google Scholar

[10]

A. Götz and J. Jahn, The Lagrange multiplier rule in set-valued optimization, SIAM J. Optim., 10 (2000), 331-344.  doi: 10.1137/S1052623496311697.  Google Scholar

[11]

J. Jahn and R. Rauh, Contingent epiderivatives and set-valued optimization, Math. Methods Oper. Res., 46 (1997), 193-211.  doi: 10.1007/BF01217690.  Google Scholar

[12]

J. Jahn and A. A. Khan, Generalized contingent epiderivatives in set-valued optimization: optimality conditions, Numer. Funct. Anal. Optim., 23 (2002), 807-831.  doi: 10.1081/NFA-120016271.  Google Scholar

[13]

J. Jahn, Vector Optimization. Theory, Applications, and Extensions, Springer, Berlin, 2004. doi: 10.1007/978-3-540-24828-6.  Google Scholar

[14]

A. A. Khan, C. Tammer and C. Zǎlinescu, Set-valued Optimization. An Introduction with Applications, Springer, Heidelberg, 2015. doi: 10.1007/978-3-642-54265-7.  Google Scholar

[15]

J. LiS. Q. Feng and Z. Zhang, A unified approach for constrained extremum problems: Image space analysis, J. Optim. Theory Appl., 159 (2013), 69-92.  doi: 10.1007/s10957-013-0276-x.  Google Scholar

[16]

D. T. Luc, Theory of Vector Optimization, Springer, Berlin, 1989. doi: 10.1007/978-3-642-50280-4.  Google Scholar

[17]

D. T. Luc, Contingent derivatives of set-valued maps and applications to vector optimization, Math. Program., 50 (1991), 99-111.  doi: 10.1007/BF01594928.  Google Scholar

[18]

A. Moldovan and L. Pellegrini, On regularity for constrained extremum problems. Part1: Sufficient optimality conditions, J. Optim. Theory Appl., 142 (2009), 147-163.  doi: 10.1007/s10957-009-9518-3.  Google Scholar

[19]

A. Moldovan and L. Pellegrini, On regularity for constrained extremum problems. Part 2: Necessary optimality conditions, J. Optim. Theory Appl., 142 (2009), 165-183.  doi: 10.1007/s10957-009-9521-8.  Google Scholar

[20]

A. Taa, Optimality conditions for vector mathematical programming via a theorem of the alternative, J. Math. Anal. Appl., 233 (1999), 233-245.  doi: 10.1006/jmaa.1999.6288.  Google Scholar

[21]

S. K. Zhu and S. J. Li, Unified duality theory for constrained extremum problems. Part Ⅰ: image space analysis, J. Optim. Theory Appl., 161 (2014), 738-762.  doi: 10.1007/s10957-013-0468-4.  Google Scholar

[22]

S. K. Zhu and S. J. Li, Unified duality theory for constrained extremum problems. Part Ⅱ: Special duality schemes, J. Optim. Theory Appl., 161 (2014), 763-782.  doi: 10.1007/s10957-013-0467-5.  Google Scholar

[23]

S. K. ZhuS. J. Li and K. L. Teo, Second-order Karush-Kuhn-Tucker optimality conditions for set-valued optimization, J. Glob. Optim., 58 (2014), 673-692.  doi: 10.1007/s10898-013-0067-9.  Google Scholar

[1]

Israa Mohammed Khudher, Yahya Ismail Ibrahim, Suhaib Abduljabbar Altamir. Individual biometrics pattern based artificial image analysis techniques. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2020056

[2]

Li Chu, Bo Wang, Jie Zhang, Hong-Wei Zhang. Convergence analysis of a smoothing SAA method for a stochastic mathematical program with second-order cone complementarity constraints. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1863-1886. doi: 10.3934/jimo.2020050

[3]

Hongjie Dong, Xinghong Pan. On conormal derivative problem for parabolic equations with Dini mean oscillation coefficients. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021049

[4]

Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022

[5]

Zhenquan Zhang, Meiling Chen, Jiajun Zhang, Tianshou Zhou. Analysis of non-Markovian effects in generalized birth-death models. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3717-3735. doi: 10.3934/dcdsb.2020254

[6]

Ankit Kumar, Kamal Jeet, Ramesh Kumar Vats. Controllability of Hilfer fractional integro-differential equations of Sobolev-type with a nonlocal condition in a Banach space. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021016

[7]

Zehui Jia, Xue Gao, Xingju Cai, Deren Han. The convergence rate analysis of the symmetric ADMM for the nonconvex separable optimization problems. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1943-1971. doi: 10.3934/jimo.2020053

[8]

Claudia Lederman, Noemi Wolanski. An optimization problem with volume constraint for an inhomogeneous operator with nonstandard growth. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2907-2946. doi: 10.3934/dcds.2020391

[9]

Hailing Xuan, Xiaoliang Cheng. Numerical analysis and simulation of an adhesive contact problem with damage and long memory. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2781-2804. doi: 10.3934/dcdsb.2020205

[10]

Hailing Xuan, Xiaoliang Cheng. Numerical analysis of a thermal frictional contact problem with long memory. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021031

[11]

Mohsen Abdolhosseinzadeh, Mir Mohammad Alipour. Design of experiment for tuning parameters of an ant colony optimization method for the constrained shortest Hamiltonian path problem in the grid networks. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 321-332. doi: 10.3934/naco.2020028

[12]

Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021014

[13]

Fatemeh Abtahi, Zeinab Kamali, Maryam Toutounchi. The BSE concepts for vector-valued Lipschitz algebras. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1171-1186. doi: 10.3934/cpaa.2021011

[14]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Existence results and stability analysis for a nonlinear fractional boundary value problem on a circular ring with an attached edge : A study of fractional calculus on metric graph. Networks & Heterogeneous Media, 2021, 16 (2) : 155-185. doi: 10.3934/nhm.2021003

[15]

Lekbir Afraites, Abdelghafour Atlas, Fahd Karami, Driss Meskine. Some class of parabolic systems applied to image processing. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1671-1687. doi: 10.3934/dcdsb.2016017

[16]

Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233

[17]

Sara Munday. On the derivative of the $\alpha$-Farey-Minkowski function. Discrete & Continuous Dynamical Systems, 2014, 34 (2) : 709-732. doi: 10.3934/dcds.2014.34.709

[18]

Zhihua Zhang, Naoki Saito. PHLST with adaptive tiling and its application to antarctic remote sensing image approximation. Inverse Problems & Imaging, 2014, 8 (1) : 321-337. doi: 10.3934/ipi.2014.8.321

[19]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

[20]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, 2021, 15 (3) : 387-413. doi: 10.3934/ipi.2020073

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (194)
  • HTML views (1086)
  • Cited by (0)

Other articles
by authors

[Back to Top]