
-
Previous Article
Linear bilevel multiobjective optimization problem: Penalty approach
- JIMO Home
- This Issue
-
Next Article
The optimal pricing and ordering policy for temperature sensitive products considering the effects of temperature on demand
Maritime inventory routing problem with multiple time windows
1. | Department of Industrial Engineering, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia |
2. | School of Engineering and Information Technology, University of New South Wales, Canberra, ACT 2600, Australia |
This paper considers a maritime inventory routing problem with multiple time windows. The typical time windows considered that certain ports permit ships entering and leaving during the daytime only due to various operational limitations. We have developed an exact algorithm to represent this problem. However, due to the excessive computational time required for solving the model, we have proposed a multi-heuristics based genetic algorithm. The multi-heuristics are composed of a set of strategies that correspond to four decision points: ship selection, ship routing, the product type and the quantity of loading and unloading products. The experimental results show that the multi-heuristics can obtain acceptable solutions within a reasonable computational time. Moreover, the flexibility to add or remove the strategies means that the proposed method would not be difficult to implement for other variants of the maritime inventory routing problem.
References:
[1] |
A. Agra, M. Christiansen, et al., A maritime inventory routing problem with stochastic sailing and port times, Computers & Operations Research, 61 (2015), 18-30
doi: 10.1016/j.cor.2015.01.008. |
[2] |
F. Al-Khayyal and S. J. Hwang,
Discrete Optimization-Inventory constrained maritime routing and scheduling for multi-commodity liquid bulk, Part Ⅰ: Applications and model, European Journal of Operational Research, 176 (2007), 106-130.
doi: 10.1016/j.ejor.2005.06.047. |
[3] |
K. Chakhlevitch and P. Cowling, Hyperheuristics: Recent developments, in Adaptive and Multilevel Metaheuristics (eds. C. Cotta, M. Sevaux, K. Sorensen), Springer-Verlag Berlin Heidelberg, (2008), 3-29 Google Scholar |
[4] |
M. Christiansen and B. Nygreen,
A method for solving ship routing problems with inventory constraints, Annals of Operations Research, 81 (1998), 357-378.
doi: 10.1023/A:1018921527269. |
[5] |
M. Christiansen and B. Nygreen,
Modeling path flows for a combined ship routing and inventory management problem, Annals of Operations Research, 82 (1998), 391-412.
doi: 10.1023/A:1018979107222. |
[6] |
M. Christiansen,
Decomposition of a combined inventory and time constrained ship routing problem, Transportation Science, 33 (1999), 3-16.
doi: 10.1287/trsc.33.1.3. |
[7] |
M. Christiansen and K. Fagerholt,
Robust ship scheduling with multiple time windows, Naval Research Logistics, 49 (2002), 611-625.
doi: 10.1002/nav.10033. |
[8] |
M. Christiansen, K. Fagerholt, B. Nygreen and D. Ronen, Chapter 4 maritime transportation in handbooks in operations research and management science, (eds, C. Barnhart, G. Laporte), North-Holland, Amsterdam, 14 (2007), 189-284. Google Scholar |
[9] |
M. Christiansen and K. Fagerholt, Maritime inventory routing problems, in Encyclopedia of Optimization, Second edition (eds C. A. Floudas, P. M. Pardalos), Springer-Verlag, (2009), 1947-1955 Google Scholar |
[10] |
M. Christiansen, K. Fagerholt, T. Flatberg, Ø. Haugen, O. Kloster and E. H. Lund,
Maritime inventory routing with multiple products: A case study from the cement industry, European Journal of Operational Research, 208 (2011), 86-94.
doi: 10.1016/j.ejor.2010.08.023. |
[11] |
K. F. Doerner, M. Gronalt, R. F. Hartl, G. Kiechle and M. Reimann,
Exact and heuristic algorithms for the vehicle routing problem with multiple interdependent time windows, Computers and Operations Research, 35 (2008), 3034-3048.
doi: 10.1016/j.cor.2007.02.012. |
[12] |
D. Favaretto, E. Moretti and P. Pellegrini,
Ant colony system for a VRP with multiple time windows and multiple visits, Journal of Interdisciplinary Mathematics, 10 (2007), 263-284.
doi: 10.1080/09720502.2007.10700491. |
[13] |
K. C. Furman, J. H. Song, G. R. Kocis, M. K. McDonald and P. H. Warrick,
Feedstock routing in the exxonmobil downstream sector, Interfaces, 41 (2011), 149-163.
doi: 10.1287/inte.1100.0508. |
[14] |
A. Hemmati, L. M. Hvattum, et al., An iterative two-phase hybrid matheuristic for a multiproduct short sea inventory-routing problem, European Journal of Operational Research, 252 (2016), 775-788
doi: 10.1016/j.ejor.2016.01.060. |
[15] |
S. J. Hwang, Inventory Constrained Maritime Routing and Scheduling for Multi-Commodity Liquid Bulk, Dissertation, School of Industrial and Systems Engineering, Georgia Institute of Technology, USA, 2005. Google Scholar |
[16] |
Y. Jiang and I. E. Grossmann,
Alternative mixed-integer linear programming models of a maritime inventory routing problem, Computers & Chemical Engineering, 77 (2015), 147-161.
doi: 10.1016/j.compchemeng.2015.03.005. |
[17] |
J. Lee and B. I. Kim,
Industrial ship routing problem with split delivery and two types of vessels, Expert Systems with Applications, 42 (2015), 9012-9023.
doi: 10.1016/j.eswa.2015.07.059. |
[18] |
D. J. Papageorgiou, G. L. Nemhauser, J. Sokol, M. S. Cheon and A. B. Keha,
MIRPLib - A library of maritime inventory routing problem instances: Survey, core model, and benchmark results, European Journal of Operational Research, 235 (2014), 350-366.
doi: 10.1016/j.ejor.2013.12.013. |
[19] |
D. J. Papageorgiou and A. B. Keha, et al., Two-stage decomposition algorithms for single product maritime inventory routing, INFORMS Journal on Computing, 26 (2014), 825-847
doi: 10.1287/ijoc.2014.0601. |
[20] |
V. Rodrigues and R. Morabito, et al., Ship routing with pickup and delivery for a maritime oil transportation system: MIP model and heuristics, Systems, 4 (2016), p31. Google Scholar |
[21] |
B. Santosa and R. Damayanti, et al., Solving multi-product inventory ship routing with a heterogeneous fleet model using a hybrid cross entropy-genetic algorithm: a case study in Indonesia, Production & Manufacturing Research, 4 (2016), 90-113
doi: 10.1080/21693277.2016.1204961. |
[22] |
M. Savelsbergh and J. H. Song,
Inventory routing with continuous moves, Computers and Operations Research, 34 (2007), 1744-1763.
doi: 10.1016/j.cor.2005.05.036. |
[23] |
N. Siswanto, D. Essam and R. Sarker,
Solving the ship inventory routing and scheduling problem with undedicated compartments, Computers and Industrial Engineering, 61 (2011), 289-299.
doi: 10.1109/ICCIE.2009.5223771. |
[24] |
N. Siswanto, D. Essam and R. Sarker, Multi-heuristics based genetic algorithm for solving maritime inventory routing problem, IEEE International Conference on Industrial Engineering and Engineering Management, Singapore, (2011), 116-120
doi: 10.1109/IEEM.2011.6117890. |
[25] |
J. Sokol, C. Zhang, G. Nemhauser, D. Papageorgiou and M. S. Cheon, Robust inventory routing with flexible time window allocation, Working paper, 2015. Google Scholar |
[26] |
J. H. Song and K. C. Furman,
A maritime inventory routing problem: Practical approach, Computers and Operations Research, 40 (2011), 657-665.
doi: 10.1016/j.cor.2010.10.031. |
[27] |
F. Tricoire, M. Romauch, K. F. Doerner and R. F. Hartl,
Heuristics for the multi-period orienteering problem with multiple time windows, Computers and Operations Research, 37 (2010), 351-367.
doi: 10.1016/j.cor.2009.05.012. |
show all references
References:
[1] |
A. Agra, M. Christiansen, et al., A maritime inventory routing problem with stochastic sailing and port times, Computers & Operations Research, 61 (2015), 18-30
doi: 10.1016/j.cor.2015.01.008. |
[2] |
F. Al-Khayyal and S. J. Hwang,
Discrete Optimization-Inventory constrained maritime routing and scheduling for multi-commodity liquid bulk, Part Ⅰ: Applications and model, European Journal of Operational Research, 176 (2007), 106-130.
doi: 10.1016/j.ejor.2005.06.047. |
[3] |
K. Chakhlevitch and P. Cowling, Hyperheuristics: Recent developments, in Adaptive and Multilevel Metaheuristics (eds. C. Cotta, M. Sevaux, K. Sorensen), Springer-Verlag Berlin Heidelberg, (2008), 3-29 Google Scholar |
[4] |
M. Christiansen and B. Nygreen,
A method for solving ship routing problems with inventory constraints, Annals of Operations Research, 81 (1998), 357-378.
doi: 10.1023/A:1018921527269. |
[5] |
M. Christiansen and B. Nygreen,
Modeling path flows for a combined ship routing and inventory management problem, Annals of Operations Research, 82 (1998), 391-412.
doi: 10.1023/A:1018979107222. |
[6] |
M. Christiansen,
Decomposition of a combined inventory and time constrained ship routing problem, Transportation Science, 33 (1999), 3-16.
doi: 10.1287/trsc.33.1.3. |
[7] |
M. Christiansen and K. Fagerholt,
Robust ship scheduling with multiple time windows, Naval Research Logistics, 49 (2002), 611-625.
doi: 10.1002/nav.10033. |
[8] |
M. Christiansen, K. Fagerholt, B. Nygreen and D. Ronen, Chapter 4 maritime transportation in handbooks in operations research and management science, (eds, C. Barnhart, G. Laporte), North-Holland, Amsterdam, 14 (2007), 189-284. Google Scholar |
[9] |
M. Christiansen and K. Fagerholt, Maritime inventory routing problems, in Encyclopedia of Optimization, Second edition (eds C. A. Floudas, P. M. Pardalos), Springer-Verlag, (2009), 1947-1955 Google Scholar |
[10] |
M. Christiansen, K. Fagerholt, T. Flatberg, Ø. Haugen, O. Kloster and E. H. Lund,
Maritime inventory routing with multiple products: A case study from the cement industry, European Journal of Operational Research, 208 (2011), 86-94.
doi: 10.1016/j.ejor.2010.08.023. |
[11] |
K. F. Doerner, M. Gronalt, R. F. Hartl, G. Kiechle and M. Reimann,
Exact and heuristic algorithms for the vehicle routing problem with multiple interdependent time windows, Computers and Operations Research, 35 (2008), 3034-3048.
doi: 10.1016/j.cor.2007.02.012. |
[12] |
D. Favaretto, E. Moretti and P. Pellegrini,
Ant colony system for a VRP with multiple time windows and multiple visits, Journal of Interdisciplinary Mathematics, 10 (2007), 263-284.
doi: 10.1080/09720502.2007.10700491. |
[13] |
K. C. Furman, J. H. Song, G. R. Kocis, M. K. McDonald and P. H. Warrick,
Feedstock routing in the exxonmobil downstream sector, Interfaces, 41 (2011), 149-163.
doi: 10.1287/inte.1100.0508. |
[14] |
A. Hemmati, L. M. Hvattum, et al., An iterative two-phase hybrid matheuristic for a multiproduct short sea inventory-routing problem, European Journal of Operational Research, 252 (2016), 775-788
doi: 10.1016/j.ejor.2016.01.060. |
[15] |
S. J. Hwang, Inventory Constrained Maritime Routing and Scheduling for Multi-Commodity Liquid Bulk, Dissertation, School of Industrial and Systems Engineering, Georgia Institute of Technology, USA, 2005. Google Scholar |
[16] |
Y. Jiang and I. E. Grossmann,
Alternative mixed-integer linear programming models of a maritime inventory routing problem, Computers & Chemical Engineering, 77 (2015), 147-161.
doi: 10.1016/j.compchemeng.2015.03.005. |
[17] |
J. Lee and B. I. Kim,
Industrial ship routing problem with split delivery and two types of vessels, Expert Systems with Applications, 42 (2015), 9012-9023.
doi: 10.1016/j.eswa.2015.07.059. |
[18] |
D. J. Papageorgiou, G. L. Nemhauser, J. Sokol, M. S. Cheon and A. B. Keha,
MIRPLib - A library of maritime inventory routing problem instances: Survey, core model, and benchmark results, European Journal of Operational Research, 235 (2014), 350-366.
doi: 10.1016/j.ejor.2013.12.013. |
[19] |
D. J. Papageorgiou and A. B. Keha, et al., Two-stage decomposition algorithms for single product maritime inventory routing, INFORMS Journal on Computing, 26 (2014), 825-847
doi: 10.1287/ijoc.2014.0601. |
[20] |
V. Rodrigues and R. Morabito, et al., Ship routing with pickup and delivery for a maritime oil transportation system: MIP model and heuristics, Systems, 4 (2016), p31. Google Scholar |
[21] |
B. Santosa and R. Damayanti, et al., Solving multi-product inventory ship routing with a heterogeneous fleet model using a hybrid cross entropy-genetic algorithm: a case study in Indonesia, Production & Manufacturing Research, 4 (2016), 90-113
doi: 10.1080/21693277.2016.1204961. |
[22] |
M. Savelsbergh and J. H. Song,
Inventory routing with continuous moves, Computers and Operations Research, 34 (2007), 1744-1763.
doi: 10.1016/j.cor.2005.05.036. |
[23] |
N. Siswanto, D. Essam and R. Sarker,
Solving the ship inventory routing and scheduling problem with undedicated compartments, Computers and Industrial Engineering, 61 (2011), 289-299.
doi: 10.1109/ICCIE.2009.5223771. |
[24] |
N. Siswanto, D. Essam and R. Sarker, Multi-heuristics based genetic algorithm for solving maritime inventory routing problem, IEEE International Conference on Industrial Engineering and Engineering Management, Singapore, (2011), 116-120
doi: 10.1109/IEEM.2011.6117890. |
[25] |
J. Sokol, C. Zhang, G. Nemhauser, D. Papageorgiou and M. S. Cheon, Robust inventory routing with flexible time window allocation, Working paper, 2015. Google Scholar |
[26] |
J. H. Song and K. C. Furman,
A maritime inventory routing problem: Practical approach, Computers and Operations Research, 40 (2011), 657-665.
doi: 10.1016/j.cor.2010.10.031. |
[27] |
F. Tricoire, M. Romauch, K. F. Doerner and R. F. Hartl,
Heuristics for the multi-period orienteering problem with multiple time windows, Computers and Operations Research, 37 (2010), 351-367.
doi: 10.1016/j.cor.2009.05.012. |








No | Decision point | Strategies |
1 | Ship selection | Based on the least ships current time |
2 | Routing | Visit two demand ports with the sequence based on the least CDik |
3 | Loading | Compartment [1] for product[1], compartment[2] for product[2] with loading quantities up to the maximum of compartments capacities |
4 | Unloading | Divide the same quantities for both ports |
No | Decision point | Strategies |
1 | Ship selection | Based on the least ships current time |
2 | Routing | Visit two demand ports with the sequence based on the least CDik |
3 | Loading | Compartment [1] for product[1], compartment[2] for product[2] with loading quantities up to the maximum of compartments capacities |
4 | Unloading | Divide the same quantities for both ports |
No | Description | H1 | H2 | H3 | |||
S11 | S12 | S21 | S22 | S31 | S32 | ||
1 | Maximum capacity (unit) | 160 | 180 | 55 | 41 | 68 | 51 |
2 | Minimum level (unit) | 0 | 0 | 0 | 0 | 0 | 0 |
3 | Initial level (unit) | 44 | 28 | 19 | 27 | 46 | 25 |
4 | Daily supply/demand rate (unit/day) | 8 | 9 | 6 | 4 | 2 | 5 |
5 | Fixed setup loading time (day) | 0.039 | 0.059 | 0.074 | 0.060 | 0.067 | 0.049 |
6 | Variable loading time (day/unit) | 0.025 | 0.010 | 0.003 | 0.026 | 0.028 | 0.014 |
7 | Fixed setup loading cost ($) | 10 | 8 | 6 | 9 | 8 | 10 |
8 | Variable loading cost ($/unit) | 0 | 0 | 0 | 0 | 0 | 0 |
9 | Quantity penalty cost ($/day) | 10 | 10 | 10 | 10 | 10 | 10 |
10 | Fixed setup port time (day) | 0 | 0 | 0 | |||
11 | Fixed setup port cost ($) | 0 | 0 | 0 | |||
12 | Daily starting time windows | 7.12am | 7.12am | 7.12am | |||
13 | Daily ending time windows | 4.48pm | 4.48am | 4.48pm |
No | Description | H1 | H2 | H3 | |||
S11 | S12 | S21 | S22 | S31 | S32 | ||
1 | Maximum capacity (unit) | 160 | 180 | 55 | 41 | 68 | 51 |
2 | Minimum level (unit) | 0 | 0 | 0 | 0 | 0 | 0 |
3 | Initial level (unit) | 44 | 28 | 19 | 27 | 46 | 25 |
4 | Daily supply/demand rate (unit/day) | 8 | 9 | 6 | 4 | 2 | 5 |
5 | Fixed setup loading time (day) | 0.039 | 0.059 | 0.074 | 0.060 | 0.067 | 0.049 |
6 | Variable loading time (day/unit) | 0.025 | 0.010 | 0.003 | 0.026 | 0.028 | 0.014 |
7 | Fixed setup loading cost ($) | 10 | 8 | 6 | 9 | 8 | 10 |
8 | Variable loading cost ($/unit) | 0 | 0 | 0 | 0 | 0 | 0 |
9 | Quantity penalty cost ($/day) | 10 | 10 | 10 | 10 | 10 | 10 |
10 | Fixed setup port time (day) | 0 | 0 | 0 | |||
11 | Fixed setup port cost ($) | 0 | 0 | 0 | |||
12 | Daily starting time windows | 7.12am | 7.12am | 7.12am | |||
13 | Daily ending time windows | 4.48pm | 4.48am | 4.48pm |
No | Description | V1 | V2 | ||
C11 | C12 | C21 | C22 | ||
1 | Maximum compartment capacity | 68 | 31 | 44 | 50 |
2 | Initial level | 0 | 0 | 40 | 4 |
3 | Current product in the compartment | - | - | P2 | P1 |
No | Description | V1 | V2 | ||
C11 | C12 | C21 | C22 | ||
1 | Maximum compartment capacity | 68 | 31 | 44 | 50 |
2 | Initial level | 0 | 0 | 40 | 4 |
3 | Current product in the compartment | - | - | P2 | P1 |
Test Problem (TP) | Planning Horizon (PH) | Scenario 1 (Mp=3;Mc=2) | Scenario 2 (Mp=3;Mc=2) | Gap (%) | ||
Optimal Solution | Run Time (in Second) | Optimal Solution | Run Time (in Second) | |||
1 | 10 | 55.8 | 1,329 | - | ﹥﹥8.64E + 4(*) | - |
15 | 91.4 | 21,423 | - | ﹥﹥8.64E + 4(*) | - | |
2 | 10 | 66.8 | 1,012 | 66.8 | 582 | 0 |
15 | 103, 0 | 25,451 | 103.0 | 74,166 | 0 | |
3 | 10 | 99.0 | 46 | - | ﹥﹥8.64E + 4(*) | - |
15 | 216.0 | 34,827 | - | ﹥﹥8.64E + 4(*) | - | |
4 | 10 | 137.0 | 640 | 137.0 | 211 | 0 |
15 | 265.0 | 47,210 | 265.0 | ﹥﹥8.64E + 4(n) | 0 | |
(n)the solution did not terminate before the time limit of 8.64E+4 seconds (24 hours) (*)a feasible solution was not obtained before the time limit of 8.64E+4 seconds (24 hours) |
Test Problem (TP) | Planning Horizon (PH) | Scenario 1 (Mp=3;Mc=2) | Scenario 2 (Mp=3;Mc=2) | Gap (%) | ||
Optimal Solution | Run Time (in Second) | Optimal Solution | Run Time (in Second) | |||
1 | 10 | 55.8 | 1,329 | - | ﹥﹥8.64E + 4(*) | - |
15 | 91.4 | 21,423 | - | ﹥﹥8.64E + 4(*) | - | |
2 | 10 | 66.8 | 1,012 | 66.8 | 582 | 0 |
15 | 103, 0 | 25,451 | 103.0 | 74,166 | 0 | |
3 | 10 | 99.0 | 46 | - | ﹥﹥8.64E + 4(*) | - |
15 | 216.0 | 34,827 | - | ﹥﹥8.64E + 4(*) | - | |
4 | 10 | 137.0 | 640 | 137.0 | 211 | 0 |
15 | 265.0 | 47,210 | 265.0 | ﹥﹥8.64E + 4(n) | 0 | |
(n)the solution did not terminate before the time limit of 8.64E+4 seconds (24 hours) (*)a feasible solution was not obtained before the time limit of 8.64E+4 seconds (24 hours) |
Gene4 | Gene3 | The first visiting port | The second visiting port |
0 | 0 | CDP[0] | |
1 | CDP[0] | CDP[1] | |
1 | 0 | CDP[1] | |
1 | CDP[1] | CDP[0] |
Gene4 | Gene3 | The first visiting port | The second visiting port |
0 | 0 | CDP[0] | |
1 | CDP[0] | CDP[1] | |
1 | 0 | CDP[1] | |
1 | CDP[1] | CDP[0] |
(A) Determining loading and unloading quantities | ||||||||||
Product # | Quantity in supply port at the time a ship arrive(*) | Remaining demands(*) | Compartment Capacity(*) | Loading Quantity(*) | Unload for the first visited port(*) | Unload for the second visited port(*) | ||||
P1 | 40.8 | 28.6 | 44.0 | 28.6 | 0.0 | 28.6 | ||||
P1 | 50.4 | 43.8 | 50.0 | 43.8 | 16.0 | 27.8 | ||||
(*) in product units | ||||||||||
(B) Routing and schedule of the selected ship | ||||||||||
Source Port | Departure | Destination Port | Port's last visit | Arrival | Waiting time to enter(n) | Lay time | ||||
Date | Time | Date | Time | Date | Time | Date | Time | |||
H3 | May 11 | 2.24pm | H1 | May 7 | 7.12am | May 12 | 9.36am | 0:00 | May 12 | 9.36am |
H1 | May 13 | 3.37pm | H3 | May 11 | 2.24am | May 14 | 10.49am | 0:00 | May 14 | 10.49am |
H3 | May 15 | 7.12am | H2 | May 11 | 7.12am | May 16 | 7.12am | 0:00 | May 16 | 7.12am |
(n) in (hour:minutes) | ||||||||||
(C) Routing and schedule of the selected ship (continue) | ||||||||||
Destination Port | Loading Time(n) | Waiting time for supply/space(n) | Ready to Leave | Waiting time to leave(n) | Leaving time | |||||
Date | Time | Date | Time | |||||||
H1 | 30:01 | 0:00 | May 13 | 3.37pm | 0:00 | May 13 | 3.37pm | |||
H3 | 6:33 | 0:00 | May 14 | 7.12pm | 12:00 | May 15 | 7.12am | |||
H2 | 22:38 | 0:00 | May 17 | 5.50am | 1:22 | May 17 | 7.12am | |||
(n) in (hour:minutes) | ||||||||||
(D) Information of each visiting port's storage | ||||||||||
Destination Port | Product# | CDik | Remaining Demand(*) | Level of Storages(*) at ship's lay time | Available space in storage(*) | Loading/Unloading quantity(*) | ||||
H1 | P1 | 27.30 | 0.0 | 40.8 | - | 28.6 | ||||
H1 | P2 | 26.80 | 0.0 | 50.4 | - | 43.8 | ||||
H3 | P1 | 25.00 | 0.0 | 21.1 | 46.9 | 0.0 | ||||
H3 | P2 | 21.80 | 16.0 | 36.7 | 14.3 | 16.0 | ||||
H2 | P1 | 20.23 | 28.6 | 23.6 | 31.4 | 28.6 | ||||
H2 | P2 | 18.05 | 27.8 | 7.0 | 34.0 | 27.8 | ||||
(*) in product units |
(A) Determining loading and unloading quantities | ||||||||||
Product # | Quantity in supply port at the time a ship arrive(*) | Remaining demands(*) | Compartment Capacity(*) | Loading Quantity(*) | Unload for the first visited port(*) | Unload for the second visited port(*) | ||||
P1 | 40.8 | 28.6 | 44.0 | 28.6 | 0.0 | 28.6 | ||||
P1 | 50.4 | 43.8 | 50.0 | 43.8 | 16.0 | 27.8 | ||||
(*) in product units | ||||||||||
(B) Routing and schedule of the selected ship | ||||||||||
Source Port | Departure | Destination Port | Port's last visit | Arrival | Waiting time to enter(n) | Lay time | ||||
Date | Time | Date | Time | Date | Time | Date | Time | |||
H3 | May 11 | 2.24pm | H1 | May 7 | 7.12am | May 12 | 9.36am | 0:00 | May 12 | 9.36am |
H1 | May 13 | 3.37pm | H3 | May 11 | 2.24am | May 14 | 10.49am | 0:00 | May 14 | 10.49am |
H3 | May 15 | 7.12am | H2 | May 11 | 7.12am | May 16 | 7.12am | 0:00 | May 16 | 7.12am |
(n) in (hour:minutes) | ||||||||||
(C) Routing and schedule of the selected ship (continue) | ||||||||||
Destination Port | Loading Time(n) | Waiting time for supply/space(n) | Ready to Leave | Waiting time to leave(n) | Leaving time | |||||
Date | Time | Date | Time | |||||||
H1 | 30:01 | 0:00 | May 13 | 3.37pm | 0:00 | May 13 | 3.37pm | |||
H3 | 6:33 | 0:00 | May 14 | 7.12pm | 12:00 | May 15 | 7.12am | |||
H2 | 22:38 | 0:00 | May 17 | 5.50am | 1:22 | May 17 | 7.12am | |||
(n) in (hour:minutes) | ||||||||||
(D) Information of each visiting port's storage | ||||||||||
Destination Port | Product# | CDik | Remaining Demand(*) | Level of Storages(*) at ship's lay time | Available space in storage(*) | Loading/Unloading quantity(*) | ||||
H1 | P1 | 27.30 | 0.0 | 40.8 | - | 28.6 | ||||
H1 | P2 | 26.80 | 0.0 | 50.4 | - | 43.8 | ||||
H3 | P1 | 25.00 | 0.0 | 21.1 | 46.9 | 0.0 | ||||
H3 | P2 | 21.80 | 16.0 | 36.7 | 14.3 | 16.0 | ||||
H2 | P1 | 20.23 | 28.6 | 23.6 | 31.4 | 28.6 | ||||
H2 | P2 | 18.05 | 27.8 | 7.0 | 34.0 | 27.8 | ||||
(*) in product units |
Test Problem (TP) | Planning Horizon (PH) | Exact Algorithm Solution | Multi-Heuristics based GA (40 runs repetition) | |||||||
No. of Individuals in a population | Best Solution (Min) | Gap (%) | Max. Solution | Average | Standart Deviation | No. of infeasible solutions | Average Running Time (in 2nd) | |||
1 | 10 | 55.8 | 20 | 55.8 | 0 | 55.8 | 55.8 | 0 | 0 | 50.3 |
50 | 55.8 | 0 | 55.8 | 55.8 | 0 | 0 | 105.6 | |||
100 | 55.8 | 0 | 55.8 | 55.8 | 0 | 0 | 222.7 | |||
15 | 91.4 | 20 | 91.4 | 0 | 108.7 | 94.3 | 5.4 | 0 | 166.0 | |
50 | 91.4 | 0 | 102.0 | 91.9 | 2.0 | 0 | 401.2 | |||
100 | 91.4 | 0 | 91.4 | 91.4 | 0 | 0 | 879.0 | |||
20 | 20 | 107.7 | - | 148.0 | 126.9 | 9.3 | 0 | 248.5 | ||
50 | 107.7 | - | 135.0 | 122.2 | 7.1 | 0 | 626.0 | |||
100 | 107.7 | - | 122.4 | 116.0 | 3.7 | 0 | 1,312.0 | |||
25 | 20 | 146.3 | - | 196.9 | 175.4 | 14.7 | 5 | 234.9 | ||
50 | 140.8 | - | 195.4 | 165.3 | 15.9 | 2 | 774.2 | |||
100 | 143.4 | - | 188.7 | 154.4 | 10.5 | 0 | 1,824.1 | |||
2 | 10 | 66.8 | 20 | 66.8 | 0 | 76.8 | 68.4 | 3.6 | 0 | 93.08 |
50 | 66.8 | 0 | 68.6 | 66.9 | 0.2 | 0 | 212.9 | |||
100 | 66.8 | 0 | 66.8 | 66.8 | 0 | 0 | 497.1 | |||
15 | 103.0 | 20 | 109.3 | 6.12 | 140.2 | 125.6 | 6.4 | 0 | 197.3 | |
50 | 103.0 | 0 | 130.5 | 120.2 | 6.5 | 0 | 535.2 | |||
100 | 105.2 | 2.14 | 124.2 | 116.6 | 4.4 | 0 | 1,207.4 | |||
20 | 149.7 | - | 191.8 | 170.3 | 9.8 | 3 | 208.3 | |||
50 | 142.3 | - | 184.0 | 166.2 | 7.5 | 5 | 694.3 | |||
100 | 149.7 | - | 191.0 | 163.7 | 10.4 | 3 | 1,520.2 | |||
25 | 20 | 177.5 | - | 231.2 | 202.8 | 12.5 | 12 | 295.8 | ||
50 | 171.6 | - | 207.3 | 190.9 | 10.4 | 6 | 938.4 | |||
100 | 173.6 | - | 208.7 | 187.0 | 8.6 | 4 | 1,771.2 | |||
3 | 10 | 99.0 | 20 | 99.0 | 0 | 99.0 | 99.0 | 0 | 0 | 43.9 |
50 | 99.0 | 0 | 99.0 | 99.0 | 0 | 0 | 109.0 | |||
100 | 99.0 | 0 | 99.0 | 99.0 | 0 | 0 | 239.9 | |||
15 | 216.0 | 20 | 216.0 | 0 | 241.0 | 222.4 | 5.0 | 0 | 147.0 | |
50 | 216.0 | 0 | 241.0 | 220.1 | 4.8 | 0 | 377.2 | |||
100 | 216.0 | 0 | 221.0 | 217.4 | 2.3 | 0 | 796.1 | |||
20 | 20 | 306.0 | - | 423.0 | 343.6 | 25.1 | 0 | 184.0 | ||
50 | 304.0 | - | 344.0 | 316.5 | 11.35 | 0 | 585.2 | |||
100 | 304.0 | - | 401.0 | 312.0 | 16.0 | 0 | 1,222.6 | |||
25 | 20 | 401.0 | - | 508.0 | 466.8 | 24.4 | 1 | 236.7 | ||
50 | 346.0 | - | 522.0 | 422.5 | 46.2 | 2 | 753.3 | |||
100 | 346.0 | - | 483.0 | 404.8 | 41.6 | 0 | 1,476.9 | |||
4 | 10 | 137.0 | 20 | 137.0 | 0 | 147.0 | 140.0 | 4.6 | 0 | 84.7 |
50 | 137.0 | 0 | 137.0 | 137.0 | 0 | 0 | 180.4 | |||
100 | 137.0 | 0 | 137.0 | 137.0 | 0 | 0 | 406.6 | |||
15 | 265.0 | 20 | 277.0 | 4.53 | 363.0 | 291.6 | 14.6 | 0 | 196.3 | |
50 | 275.0 | 3.77 | 294.0 | 284.6 | 5.4 | 0 | 530.0 | |||
100 | 265.0 | 0 | 287.0 | 281.4 | 4.8 | 0 | 1,294.4 | |||
20 | 20 | 354.0 | - | 479.0 | 423.7 | 24.7 | 1 | 217.5 | ||
50 | 407.0 | - | 454.0 | 423.2 | 15.2 | 5 | 676.3 | |||
100 | 350.0 | - | 454.0 | 396.3 | 29.5 | 0 | 1,498.9 | |||
25 | 20 | 484.0 | - | 632.0 | 543.2 | 31.9 | 14 | 304.6 | ||
50 | 431.0 | - | 567.0 | 517.9 | 34.3 | 7 | 894.2 | |||
100 | 431.0 | - | 558.0 | 505.3 | 31.8 | 6 | 1,818.1 | |||
Note: (*) a feasible solution was not found before the time limit of 8.64E+4 seconds (24 hours) |
Test Problem (TP) | Planning Horizon (PH) | Exact Algorithm Solution | Multi-Heuristics based GA (40 runs repetition) | |||||||
No. of Individuals in a population | Best Solution (Min) | Gap (%) | Max. Solution | Average | Standart Deviation | No. of infeasible solutions | Average Running Time (in 2nd) | |||
1 | 10 | 55.8 | 20 | 55.8 | 0 | 55.8 | 55.8 | 0 | 0 | 50.3 |
50 | 55.8 | 0 | 55.8 | 55.8 | 0 | 0 | 105.6 | |||
100 | 55.8 | 0 | 55.8 | 55.8 | 0 | 0 | 222.7 | |||
15 | 91.4 | 20 | 91.4 | 0 | 108.7 | 94.3 | 5.4 | 0 | 166.0 | |
50 | 91.4 | 0 | 102.0 | 91.9 | 2.0 | 0 | 401.2 | |||
100 | 91.4 | 0 | 91.4 | 91.4 | 0 | 0 | 879.0 | |||
20 | 20 | 107.7 | - | 148.0 | 126.9 | 9.3 | 0 | 248.5 | ||
50 | 107.7 | - | 135.0 | 122.2 | 7.1 | 0 | 626.0 | |||
100 | 107.7 | - | 122.4 | 116.0 | 3.7 | 0 | 1,312.0 | |||
25 | 20 | 146.3 | - | 196.9 | 175.4 | 14.7 | 5 | 234.9 | ||
50 | 140.8 | - | 195.4 | 165.3 | 15.9 | 2 | 774.2 | |||
100 | 143.4 | - | 188.7 | 154.4 | 10.5 | 0 | 1,824.1 | |||
2 | 10 | 66.8 | 20 | 66.8 | 0 | 76.8 | 68.4 | 3.6 | 0 | 93.08 |
50 | 66.8 | 0 | 68.6 | 66.9 | 0.2 | 0 | 212.9 | |||
100 | 66.8 | 0 | 66.8 | 66.8 | 0 | 0 | 497.1 | |||
15 | 103.0 | 20 | 109.3 | 6.12 | 140.2 | 125.6 | 6.4 | 0 | 197.3 | |
50 | 103.0 | 0 | 130.5 | 120.2 | 6.5 | 0 | 535.2 | |||
100 | 105.2 | 2.14 | 124.2 | 116.6 | 4.4 | 0 | 1,207.4 | |||
20 | 149.7 | - | 191.8 | 170.3 | 9.8 | 3 | 208.3 | |||
50 | 142.3 | - | 184.0 | 166.2 | 7.5 | 5 | 694.3 | |||
100 | 149.7 | - | 191.0 | 163.7 | 10.4 | 3 | 1,520.2 | |||
25 | 20 | 177.5 | - | 231.2 | 202.8 | 12.5 | 12 | 295.8 | ||
50 | 171.6 | - | 207.3 | 190.9 | 10.4 | 6 | 938.4 | |||
100 | 173.6 | - | 208.7 | 187.0 | 8.6 | 4 | 1,771.2 | |||
3 | 10 | 99.0 | 20 | 99.0 | 0 | 99.0 | 99.0 | 0 | 0 | 43.9 |
50 | 99.0 | 0 | 99.0 | 99.0 | 0 | 0 | 109.0 | |||
100 | 99.0 | 0 | 99.0 | 99.0 | 0 | 0 | 239.9 | |||
15 | 216.0 | 20 | 216.0 | 0 | 241.0 | 222.4 | 5.0 | 0 | 147.0 | |
50 | 216.0 | 0 | 241.0 | 220.1 | 4.8 | 0 | 377.2 | |||
100 | 216.0 | 0 | 221.0 | 217.4 | 2.3 | 0 | 796.1 | |||
20 | 20 | 306.0 | - | 423.0 | 343.6 | 25.1 | 0 | 184.0 | ||
50 | 304.0 | - | 344.0 | 316.5 | 11.35 | 0 | 585.2 | |||
100 | 304.0 | - | 401.0 | 312.0 | 16.0 | 0 | 1,222.6 | |||
25 | 20 | 401.0 | - | 508.0 | 466.8 | 24.4 | 1 | 236.7 | ||
50 | 346.0 | - | 522.0 | 422.5 | 46.2 | 2 | 753.3 | |||
100 | 346.0 | - | 483.0 | 404.8 | 41.6 | 0 | 1,476.9 | |||
4 | 10 | 137.0 | 20 | 137.0 | 0 | 147.0 | 140.0 | 4.6 | 0 | 84.7 |
50 | 137.0 | 0 | 137.0 | 137.0 | 0 | 0 | 180.4 | |||
100 | 137.0 | 0 | 137.0 | 137.0 | 0 | 0 | 406.6 | |||
15 | 265.0 | 20 | 277.0 | 4.53 | 363.0 | 291.6 | 14.6 | 0 | 196.3 | |
50 | 275.0 | 3.77 | 294.0 | 284.6 | 5.4 | 0 | 530.0 | |||
100 | 265.0 | 0 | 287.0 | 281.4 | 4.8 | 0 | 1,294.4 | |||
20 | 20 | 354.0 | - | 479.0 | 423.7 | 24.7 | 1 | 217.5 | ||
50 | 407.0 | - | 454.0 | 423.2 | 15.2 | 5 | 676.3 | |||
100 | 350.0 | - | 454.0 | 396.3 | 29.5 | 0 | 1,498.9 | |||
25 | 20 | 484.0 | - | 632.0 | 543.2 | 31.9 | 14 | 304.6 | ||
50 | 431.0 | - | 567.0 | 517.9 | 34.3 | 7 | 894.2 | |||
100 | 431.0 | - | 558.0 | 505.3 | 31.8 | 6 | 1,818.1 | |||
Note: (*) a feasible solution was not found before the time limit of 8.64E+4 seconds (24 hours) |
[1] |
Haodong Chen, Hongchun Sun, Yiju Wang. A complementarity model and algorithm for direct multi-commodity flow supply chain network equilibrium problem. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2217-2242. doi: 10.3934/jimo.2020066 |
[2] |
Ashkan Ayough, Farbod Farhadi, Mostafa Zandieh, Parisa Rastkhadiv. Genetic algorithm for obstacle location-allocation problems with customer priorities. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1753-1769. doi: 10.3934/jimo.2020044 |
[3] |
Shoufeng Ji, Jinhuan Tang, Minghe Sun, Rongjuan Luo. Multi-objective optimization for a combined location-routing-inventory system considering carbon-capped differences. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021051 |
[4] |
Kazeem Olalekan Aremu, Chinedu Izuchukwu, Grace Nnenanya Ogwo, Oluwatosin Temitope Mewomo. Multi-step iterative algorithm for minimization and fixed point problems in p-uniformly convex metric spaces. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2161-2180. doi: 10.3934/jimo.2020063 |
[5] |
Namsu Ahn, Soochan Kim. Optimal and heuristic algorithms for the multi-objective vehicle routing problem with drones for military surveillance operations. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021037 |
[6] |
Yishui Wang, Dongmei Zhang, Peng Zhang, Yong Zhang. Local search algorithm for the squared metric $ k $-facility location problem with linear penalties. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2013-2030. doi: 10.3934/jimo.2020056 |
[7] |
Grace Nnennaya Ogwo, Chinedu Izuchukwu, Oluwatosin Temitope Mewomo. A modified extragradient algorithm for a certain class of split pseudo-monotone variational inequality problem. Numerical Algebra, Control & Optimization, 2021 doi: 10.3934/naco.2021011 |
[8] |
Tadeusz Kaczorek, Andrzej Ruszewski. Analysis of the fractional descriptor discrete-time linear systems by the use of the shuffle algorithm. Journal of Computational Dynamics, 2021 doi: 10.3934/jcd.2021007 |
[9] |
J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008 |
[10] |
Gbeminiyi John Oyewole, Olufemi Adetunji. Solving the facility location and fixed charge solid transportation problem. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1557-1575. doi: 10.3934/jimo.2020034 |
[11] |
Demetres D. Kouvatsos, Jumma S. Alanazi, Kevin Smith. A unified ME algorithm for arbitrary open QNMs with mixed blocking mechanisms. Numerical Algebra, Control & Optimization, 2011, 1 (4) : 781-816. doi: 10.3934/naco.2011.1.781 |
[12] |
Xiaochen Mao, Weijie Ding, Xiangyu Zhou, Song Wang, Xingyong Li. Complexity in time-delay networks of multiple interacting neural groups. Electronic Research Archive, , () : -. doi: 10.3934/era.2021022 |
[13] |
Zheng Chang, Haoxun Chen, Farouk Yalaoui, Bo Dai. Adaptive large neighborhood search Algorithm for route planning of freight buses with pickup and delivery. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1771-1793. doi: 10.3934/jimo.2020045 |
[14] |
Fabio Camilli, Serikbolsyn Duisembay, Qing Tang. Approximation of an optimal control problem for the time-fractional Fokker-Planck equation. Journal of Dynamics & Games, 2021 doi: 10.3934/jdg.2021013 |
[15] |
Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3063-3092. doi: 10.3934/dcds.2020398 |
[16] |
Cicely K. Macnamara, Mark A. J. Chaplain. Spatio-temporal models of synthetic genetic oscillators. Mathematical Biosciences & Engineering, 2017, 14 (1) : 249-262. doi: 10.3934/mbe.2017016 |
[17] |
Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021014 |
[18] |
Xu Zhang, Xiang Li. Modeling and identification of dynamical system with Genetic Regulation in batch fermentation of glycerol. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 393-403. doi: 10.3934/naco.2015.5.393 |
[19] |
Muberra Allahverdi, Harun Aydilek, Asiye Aydilek, Ali Allahverdi. A better dominance relation and heuristics for Two-Machine No-Wait Flowshops with Maximum Lateness Performance Measure. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1973-1991. doi: 10.3934/jimo.2020054 |
[20] |
Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021035 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]