July  2019, 15(3): 1213-1223. doi: 10.3934/jimo.2018092

Linear bilevel multiobjective optimization problem: Penalty approach

1. 

School of Information and Mathematics, Yangtze University, Jingzhou 434023, China

2. 

School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China

* Corresponding author: Yibing Lv

Received  May 2017 Revised  October 2017 Published  July 2018

Fund Project: The first author is supported by the National Natural Science Foundation of China grant 11771058, 11201039, 71471140, 91647204

In this paper, we are interested by the linear bilevel multiobjective programming problem, where both the upper level and the lower level have multiple objectives. We approach this problem via an exact penalty method. Then, we propose an exact penalty function algorithm. Numerical results showing viability of the algorithm proposed are presented.

Citation: Yibing Lv, Zhongping Wan. Linear bilevel multiobjective optimization problem: Penalty approach. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1213-1223. doi: 10.3934/jimo.2018092
References:
[1]

M. Abo-Sinna, A bilevel nonlinear multiobjective decision making under fuzziness, Journal of Operational Research Society of India, 38 (2001), 484-495.  doi: 10.1007/BF03398652.  Google Scholar

[2]

G. Anandalingam and D. J. White, A solution for the linear static Stackelberg problem using penalty function, IEEE Transactions Automatic Control, 35 (1990), 1170-1173.  doi: 10.1109/9.58565.  Google Scholar

[3]

Z. Ankhili and A. Mansouri, An exact penalty on bilevel programs with linear vector optimization lower level, European Journal of Operational Research, 197 (2009), 36-41.  doi: 10.1016/j.ejor.2008.06.026.  Google Scholar

[4]

J. Bard, Practical Bilevel Optimization: Algorithm and Applications, Kluwer, Dordrecht, 1998. doi: 10.1007/978-1-4757-2836-1.  Google Scholar

[5]

H. P. Benson, Optimization over the efficient set, Journal of Mathematical Analysis and Applications, 98 (1984), 562-580.  doi: 10.1016/0022-247X(84)90269-5.  Google Scholar

[6]

H. Bonnel and J. Morgan, Semivectorial bilevel optimization problem: Penalty approach, Journal of Optimization Theory and Applications, 131 (2006), 365-382.  doi: 10.1007/s10957-006-9150-4.  Google Scholar

[7]

H. I. Calvete and C. Gale, Linear bilevel programs with multiple objectives at the upper level, Journal of Computational and Applied Mathematics, 234 (2010), 950-959.  doi: 10.1016/j.cam.2008.12.010.  Google Scholar

[8]

B. ColsonP. Marcotte and G. Savard, An overview of bilevel optimization, Annals of Operations Research, 153 (2007), 235-256.  doi: 10.1007/s10479-007-0176-2.  Google Scholar

[9]

K. Deb and A. Sinha, Solving bilevel multi-objective optimization problems using evolutionary algorithms, Lecture Notes in Computer Science: Evolutionary Multi-criterion Optimization, 5467 (2009), 110-124.  doi: 10.1007/978-3-642-01020-0_13.  Google Scholar

[10]

S. Dempe, Foundations of Bilevel Programming, Kluwer, Dordrecht, 2002.  Google Scholar

[11]

S. Dempe, Annotated bibliography on bilevel programming and mathematical programs with equilibrium constraints, Optimization, 52 (2003), 333-359.  doi: 10.1080/0233193031000149894.  Google Scholar

[12]

S. Dempe and J. Dutta, Is bilevel programming a special case of a mathematical program with complementarity constraints?, Mathematical Programming, 131 (2012), 37-48.  doi: 10.1007/s10107-010-0342-1.  Google Scholar

[13]

G. Eichfelder, Multiobjective bilevel optimization, Mathematical Programming, 123 (2010), 419-449.  doi: 10.1007/s10107-008-0259-0.  Google Scholar

[14]

Y. B. Lv, An exact penalty function approach for solving the linear bilevel multiobjective programming problem, Filomat, 29 (2015), 773-779.  doi: 10.2298/FIL1504773L.  Google Scholar

[15]

Y. B. Lv and Z. P. Wan, Solving linear bilevel multiobjective programming problem via exact penalty function approach, Journal or Inequalities and Applications, 2015 (2015), 12pp. doi: 10.1186/s13660-015-0780-7.  Google Scholar

[16]

I. Nishizaki and M. Sakawa, Stackelberg solutions to multiobjective two-level linear programming problem, Journal of Optimization Theory and Applications, 103 (1999), 161-182.  doi: 10.1023/A:1021729618112.  Google Scholar

[17]

M. S. OsmanM. A. Abo-SinnaA. H. Amer and O. E. Emam, A multilevel nonlinear multiobjective decision making under fuzziness, Applied Mathematics and Computation, 153 (2004), 239-252.  doi: 10.1016/S0096-3003(03)00628-3.  Google Scholar

[18]

C. O. PieumeP. Marcotte and L. P. Fotso, Solving bilevel linear multiobjective programming problems, American Journal of Operations Research, (2011), 214-219.  doi: 10.4236/ajor.2011.14024.  Google Scholar

[19]

M. Sakawa and I. Nishizaki, Cooperative and Noncooperative Multi-Level Programming, Springer, Berlin, 2009. doi: 10.1007/978-1-4419-0676-2.  Google Scholar

[20]

X. Shi and H. Xia, Interactive bilevel multiobjective decision making, Journal of Operations Research Society, 48 (1997), 943-949.   Google Scholar

[21]

X. Shi and H. Xia, Model and interative algorithm of bilevel multiobjective decision making with multiple interconnected decision makers, Journal of Multi-Criteria Decision Analysis, 10 (2001), 27-34.   Google Scholar

[22]

H. W. Tang and X. Z. Qin, Pratical Methods of Optimization, Dalian University of Technology Press, Dalian, China, 2004. Google Scholar

[23]

C. TengL. Li and H. Li, A class of genetic algorithms on bilevel multiobjective decision making problem, Journal of Systems Science and Systems Engineering, 9 (2000), 290-296.   Google Scholar

[24]

L. Vicente and P. Calamai, Bilevel and multilevel programming: A bibligraphy review, Journal of Global Optimization, 5 (1994), 291-306.  doi: 10.1007/BF01096458.  Google Scholar

[25]

J. Ye, Necessary optimality conditions for multiobjective bilevel programs, Mathematics of Operations Reseach, 36 (2011), 165-184.  doi: 10.1287/moor.1100.0480.  Google Scholar

[26]

G. ZhangJ. Lu and T. Dillon, Decentralized multi-objective bilevel decision making with fuzzy demands, Knowledge-Based Systems, 20 (2007), 495-507.  doi: 10.1016/j.knosys.2007.01.003.  Google Scholar

[27]

Y. Zheng and Z. Wan, A solution method for semivectorial bilevel programming problem via penalty method, Journal of Applied Mathematics and Computing, 37 (2011), 207-219.  doi: 10.1007/s12190-010-0430-7.  Google Scholar

show all references

References:
[1]

M. Abo-Sinna, A bilevel nonlinear multiobjective decision making under fuzziness, Journal of Operational Research Society of India, 38 (2001), 484-495.  doi: 10.1007/BF03398652.  Google Scholar

[2]

G. Anandalingam and D. J. White, A solution for the linear static Stackelberg problem using penalty function, IEEE Transactions Automatic Control, 35 (1990), 1170-1173.  doi: 10.1109/9.58565.  Google Scholar

[3]

Z. Ankhili and A. Mansouri, An exact penalty on bilevel programs with linear vector optimization lower level, European Journal of Operational Research, 197 (2009), 36-41.  doi: 10.1016/j.ejor.2008.06.026.  Google Scholar

[4]

J. Bard, Practical Bilevel Optimization: Algorithm and Applications, Kluwer, Dordrecht, 1998. doi: 10.1007/978-1-4757-2836-1.  Google Scholar

[5]

H. P. Benson, Optimization over the efficient set, Journal of Mathematical Analysis and Applications, 98 (1984), 562-580.  doi: 10.1016/0022-247X(84)90269-5.  Google Scholar

[6]

H. Bonnel and J. Morgan, Semivectorial bilevel optimization problem: Penalty approach, Journal of Optimization Theory and Applications, 131 (2006), 365-382.  doi: 10.1007/s10957-006-9150-4.  Google Scholar

[7]

H. I. Calvete and C. Gale, Linear bilevel programs with multiple objectives at the upper level, Journal of Computational and Applied Mathematics, 234 (2010), 950-959.  doi: 10.1016/j.cam.2008.12.010.  Google Scholar

[8]

B. ColsonP. Marcotte and G. Savard, An overview of bilevel optimization, Annals of Operations Research, 153 (2007), 235-256.  doi: 10.1007/s10479-007-0176-2.  Google Scholar

[9]

K. Deb and A. Sinha, Solving bilevel multi-objective optimization problems using evolutionary algorithms, Lecture Notes in Computer Science: Evolutionary Multi-criterion Optimization, 5467 (2009), 110-124.  doi: 10.1007/978-3-642-01020-0_13.  Google Scholar

[10]

S. Dempe, Foundations of Bilevel Programming, Kluwer, Dordrecht, 2002.  Google Scholar

[11]

S. Dempe, Annotated bibliography on bilevel programming and mathematical programs with equilibrium constraints, Optimization, 52 (2003), 333-359.  doi: 10.1080/0233193031000149894.  Google Scholar

[12]

S. Dempe and J. Dutta, Is bilevel programming a special case of a mathematical program with complementarity constraints?, Mathematical Programming, 131 (2012), 37-48.  doi: 10.1007/s10107-010-0342-1.  Google Scholar

[13]

G. Eichfelder, Multiobjective bilevel optimization, Mathematical Programming, 123 (2010), 419-449.  doi: 10.1007/s10107-008-0259-0.  Google Scholar

[14]

Y. B. Lv, An exact penalty function approach for solving the linear bilevel multiobjective programming problem, Filomat, 29 (2015), 773-779.  doi: 10.2298/FIL1504773L.  Google Scholar

[15]

Y. B. Lv and Z. P. Wan, Solving linear bilevel multiobjective programming problem via exact penalty function approach, Journal or Inequalities and Applications, 2015 (2015), 12pp. doi: 10.1186/s13660-015-0780-7.  Google Scholar

[16]

I. Nishizaki and M. Sakawa, Stackelberg solutions to multiobjective two-level linear programming problem, Journal of Optimization Theory and Applications, 103 (1999), 161-182.  doi: 10.1023/A:1021729618112.  Google Scholar

[17]

M. S. OsmanM. A. Abo-SinnaA. H. Amer and O. E. Emam, A multilevel nonlinear multiobjective decision making under fuzziness, Applied Mathematics and Computation, 153 (2004), 239-252.  doi: 10.1016/S0096-3003(03)00628-3.  Google Scholar

[18]

C. O. PieumeP. Marcotte and L. P. Fotso, Solving bilevel linear multiobjective programming problems, American Journal of Operations Research, (2011), 214-219.  doi: 10.4236/ajor.2011.14024.  Google Scholar

[19]

M. Sakawa and I. Nishizaki, Cooperative and Noncooperative Multi-Level Programming, Springer, Berlin, 2009. doi: 10.1007/978-1-4419-0676-2.  Google Scholar

[20]

X. Shi and H. Xia, Interactive bilevel multiobjective decision making, Journal of Operations Research Society, 48 (1997), 943-949.   Google Scholar

[21]

X. Shi and H. Xia, Model and interative algorithm of bilevel multiobjective decision making with multiple interconnected decision makers, Journal of Multi-Criteria Decision Analysis, 10 (2001), 27-34.   Google Scholar

[22]

H. W. Tang and X. Z. Qin, Pratical Methods of Optimization, Dalian University of Technology Press, Dalian, China, 2004. Google Scholar

[23]

C. TengL. Li and H. Li, A class of genetic algorithms on bilevel multiobjective decision making problem, Journal of Systems Science and Systems Engineering, 9 (2000), 290-296.   Google Scholar

[24]

L. Vicente and P. Calamai, Bilevel and multilevel programming: A bibligraphy review, Journal of Global Optimization, 5 (1994), 291-306.  doi: 10.1007/BF01096458.  Google Scholar

[25]

J. Ye, Necessary optimality conditions for multiobjective bilevel programs, Mathematics of Operations Reseach, 36 (2011), 165-184.  doi: 10.1287/moor.1100.0480.  Google Scholar

[26]

G. ZhangJ. Lu and T. Dillon, Decentralized multi-objective bilevel decision making with fuzzy demands, Knowledge-Based Systems, 20 (2007), 495-507.  doi: 10.1016/j.knosys.2007.01.003.  Google Scholar

[27]

Y. Zheng and Z. Wan, A solution method for semivectorial bilevel programming problem via penalty method, Journal of Applied Mathematics and Computing, 37 (2011), 207-219.  doi: 10.1007/s12190-010-0430-7.  Google Scholar

Table 1.  The Pareto optimal solution obtained in this paper
Exam. No. The Pareto optimal solution $(x^{*}, y^{*})$ obtained in this paper
Exam.3 $(x^{*}, y^{*})=(2.479, 0.521, 3.479, 5.0)$
Exam.4 $(x^{*}, y^{*})=(144.2, 26.8, 2.97, 67.7, 0)$
Exam.5 $(x^{*}, y^{*})=(11.938, 0, 0, 14.177, 2.786, 6.036)$
Exam.6 $(x^{*}, y^{*})=(70.0,100.0, 70.0)$
Exam. No. The Pareto optimal solution $(x^{*}, y^{*})$ obtained in this paper
Exam.3 $(x^{*}, y^{*})=(2.479, 0.521, 3.479, 5.0)$
Exam.4 $(x^{*}, y^{*})=(144.2, 26.8, 2.97, 67.7, 0)$
Exam.5 $(x^{*}, y^{*})=(11.938, 0, 0, 14.177, 2.786, 6.036)$
Exam.6 $(x^{*}, y^{*})=(70.0,100.0, 70.0)$
Table 2.  Results in this paper and that in [15]
Exam. No. Results in this paper Results by the algorithm in [15]
Exam.3 $(x^{*}, y^{*})=(2.479, 0.521, 3.479, 5.0)$ $(x^{*}, y^{*})=(0.6, 2.4, 0, 0)$
$F(x^{*}, y^{*})=(3.521, 7.958)$ $F(x^{*}, y^{*})=(5.4, 4.2)$
Exam.4 $(x^{*}, y^{*})=(144.2, 26.8, 2.97, 67.7, 0)$ $(x^{*}, y^{*})=(144.2, 26.8, 2.97, 67.7, 0)$
$F(x^{*}, y^{*})=(482.7, 1831.4)$ $F(x^{*}, y^{*})=(482.7, 1831.4)$
Exam.5 $(x^{*}, y^{*})=(11.938, 0, 0, 14.177, 2.786, 6.036)$ $(x^{*}, y^{*})=(11.938, 0, 0, 14.177, 2.786, 6.036)$
$F(x^{*}, y^{*})=(-364.008, -182.004)$ $F(x^{*}, y^{*})=(-364.008, -182.004)$
Exam.6 $(x^{*}, y^{*})=(70.0,100.0, 70.0)$ $(x^{*}, y^{*})=(70.0,100.0, 70.0)$
$F(x^{*}, y^{*})=(10.0, 5.0)$ $F(x^{*}, y^{*})=(10.0, 5.0)$
Exam. No. Results in this paper Results by the algorithm in [15]
Exam.3 $(x^{*}, y^{*})=(2.479, 0.521, 3.479, 5.0)$ $(x^{*}, y^{*})=(0.6, 2.4, 0, 0)$
$F(x^{*}, y^{*})=(3.521, 7.958)$ $F(x^{*}, y^{*})=(5.4, 4.2)$
Exam.4 $(x^{*}, y^{*})=(144.2, 26.8, 2.97, 67.7, 0)$ $(x^{*}, y^{*})=(144.2, 26.8, 2.97, 67.7, 0)$
$F(x^{*}, y^{*})=(482.7, 1831.4)$ $F(x^{*}, y^{*})=(482.7, 1831.4)$
Exam.5 $(x^{*}, y^{*})=(11.938, 0, 0, 14.177, 2.786, 6.036)$ $(x^{*}, y^{*})=(11.938, 0, 0, 14.177, 2.786, 6.036)$
$F(x^{*}, y^{*})=(-364.008, -182.004)$ $F(x^{*}, y^{*})=(-364.008, -182.004)$
Exam.6 $(x^{*}, y^{*})=(70.0,100.0, 70.0)$ $(x^{*}, y^{*})=(70.0,100.0, 70.0)$
$F(x^{*}, y^{*})=(10.0, 5.0)$ $F(x^{*}, y^{*})=(10.0, 5.0)$
[1]

Yibing Lv, Tiesong Hu, Jianlin Jiang. Penalty method-based equilibrium point approach for solving the linear bilevel multiobjective programming problem. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020102

[2]

Zhiqing Meng, Qiying Hu, Chuangyin Dang. A penalty function algorithm with objective parameters for nonlinear mathematical programming. Journal of Industrial & Management Optimization, 2009, 5 (3) : 585-601. doi: 10.3934/jimo.2009.5.585

[3]

Yanqin Bai, Chuanhao Guo. Doubly nonnegative relaxation method for solving multiple objective quadratic programming problems. Journal of Industrial & Management Optimization, 2014, 10 (2) : 543-556. doi: 10.3934/jimo.2014.10.543

[4]

Yue Zheng, Zhongping Wan, Shihui Jia, Guangmin Wang. A new method for strong-weak linear bilevel programming problem. Journal of Industrial & Management Optimization, 2015, 11 (2) : 529-547. doi: 10.3934/jimo.2015.11.529

[5]

Shiyun Wang, Yong-Jin Liu, Yong Jiang. A majorized penalty approach to inverse linear second order cone programming problems. Journal of Industrial & Management Optimization, 2014, 10 (3) : 965-976. doi: 10.3934/jimo.2014.10.965

[6]

Vladimir Gaitsgory, Alex Parkinson, Ilya Shvartsman. Linear programming based optimality conditions and approximate solution of a deterministic infinite horizon discounted optimal control problem in discrete time. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1743-1767. doi: 10.3934/dcdsb.2018235

[7]

Ram U. Verma. General parametric sufficient optimality conditions for multiple objective fractional subset programming relating to generalized $(\rho,\eta,A)$ -invexity. Numerical Algebra, Control & Optimization, 2011, 1 (3) : 333-339. doi: 10.3934/naco.2011.1.333

[8]

Rui Qian, Rong Hu, Ya-Ping Fang. Local smooth representation of solution sets in parametric linear fractional programming problems. Numerical Algebra, Control & Optimization, 2019, 9 (1) : 45-52. doi: 10.3934/naco.2019004

[9]

Xinmin Yang. On second order symmetric duality in nondifferentiable multiobjective programming. Journal of Industrial & Management Optimization, 2009, 5 (4) : 697-703. doi: 10.3934/jimo.2009.5.697

[10]

Mansoureh Alavi Hejazi, Soghra Nobakhtian. Optimality conditions for multiobjective fractional programming, via convexificators. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-9. doi: 10.3934/jimo.2018170

[11]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[12]

Charles Fefferman. Interpolation by linear programming I. Discrete & Continuous Dynamical Systems - A, 2011, 30 (2) : 477-492. doi: 10.3934/dcds.2011.30.477

[13]

Paul B. Hermanns, Nguyen Van Thoai. Global optimization algorithm for solving bilevel programming problems with quadratic lower levels. Journal of Industrial & Management Optimization, 2010, 6 (1) : 177-196. doi: 10.3934/jimo.2010.6.177

[14]

Le Thi Hoai An, Tran Duc Quynh, Pham Dinh Tao. A DC programming approach for a class of bilevel programming problems and its application in Portfolio Selection. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 167-185. doi: 10.3934/naco.2012.2.167

[15]

Jean Creignou, Hervé Diet. Linear programming bounds for unitary codes. Advances in Mathematics of Communications, 2010, 4 (3) : 323-344. doi: 10.3934/amc.2010.4.323

[16]

Satoshi Ito, Soon-Yi Wu, Ting-Jang Shiu, Kok Lay Teo. A numerical approach to infinite-dimensional linear programming in $L_1$ spaces. Journal of Industrial & Management Optimization, 2010, 6 (1) : 15-28. doi: 10.3934/jimo.2010.6.15

[17]

Xinmin Yang, Xiaoqi Yang, Kok Lay Teo. Higher-order symmetric duality in multiobjective programming with invexity. Journal of Industrial & Management Optimization, 2008, 4 (2) : 385-391. doi: 10.3934/jimo.2008.4.385

[18]

Xinmin Yang, Xiaoqi Yang. A note on mixed type converse duality in multiobjective programming problems. Journal of Industrial & Management Optimization, 2010, 6 (3) : 497-500. doi: 10.3934/jimo.2010.6.497

[19]

Liping Tang, Xinmin Yang, Ying Gao. Higher-order symmetric duality for multiobjective programming with cone constraints. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-12. doi: 10.3934/jimo.2019033

[20]

Yasmine Cherfaoui, Mustapha Moulaï. Biobjective optimization over the efficient set of multiobjective integer programming problem. Journal of Industrial & Management Optimization, 2017, 13 (5) : 0-0. doi: 10.3934/jimo.2019102

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (107)
  • HTML views (1003)
  • Cited by (0)

Other articles
by authors

[Back to Top]