[1]
|
M. Abo-Sinna, A bilevel nonlinear multiobjective decision making under fuzziness, Journal of Operational Research Society of India, 38 (2001), 484-495.
doi: 10.1007/BF03398652.
|
[2]
|
G. Anandalingam and D. J. White, A solution for the linear static Stackelberg problem using penalty function, IEEE Transactions Automatic Control, 35 (1990), 1170-1173.
doi: 10.1109/9.58565.
|
[3]
|
Z. Ankhili and A. Mansouri, An exact penalty on bilevel programs with linear vector optimization lower level, European Journal of Operational Research, 197 (2009), 36-41.
doi: 10.1016/j.ejor.2008.06.026.
|
[4]
|
J. Bard, Practical Bilevel Optimization: Algorithm and Applications, Kluwer, Dordrecht, 1998.
doi: 10.1007/978-1-4757-2836-1.
|
[5]
|
H. P. Benson, Optimization over the efficient set, Journal of Mathematical Analysis and Applications, 98 (1984), 562-580.
doi: 10.1016/0022-247X(84)90269-5.
|
[6]
|
H. Bonnel and J. Morgan, Semivectorial bilevel optimization problem: Penalty approach, Journal of Optimization Theory and Applications, 131 (2006), 365-382.
doi: 10.1007/s10957-006-9150-4.
|
[7]
|
H. I. Calvete and C. Gale, Linear bilevel programs with multiple objectives at the upper level, Journal of Computational and Applied Mathematics, 234 (2010), 950-959.
doi: 10.1016/j.cam.2008.12.010.
|
[8]
|
B. Colson, P. Marcotte and G. Savard, An overview of bilevel optimization, Annals of Operations Research, 153 (2007), 235-256.
doi: 10.1007/s10479-007-0176-2.
|
[9]
|
K. Deb and A. Sinha, Solving bilevel multi-objective optimization problems using evolutionary algorithms, Lecture Notes in Computer Science: Evolutionary Multi-criterion Optimization, 5467 (2009), 110-124.
doi: 10.1007/978-3-642-01020-0_13.
|
[10]
|
S. Dempe, Foundations of Bilevel Programming, Kluwer, Dordrecht, 2002.
|
[11]
|
S. Dempe, Annotated bibliography on bilevel programming and mathematical programs with equilibrium constraints, Optimization, 52 (2003), 333-359.
doi: 10.1080/0233193031000149894.
|
[12]
|
S. Dempe and J. Dutta, Is bilevel programming a special case of a mathematical program with complementarity constraints?, Mathematical Programming, 131 (2012), 37-48.
doi: 10.1007/s10107-010-0342-1.
|
[13]
|
G. Eichfelder, Multiobjective bilevel optimization, Mathematical Programming, 123 (2010), 419-449.
doi: 10.1007/s10107-008-0259-0.
|
[14]
|
Y. B. Lv, An exact penalty function approach for solving the linear bilevel multiobjective programming problem, Filomat, 29 (2015), 773-779.
doi: 10.2298/FIL1504773L.
|
[15]
|
Y. B. Lv and Z. P. Wan, Solving linear bilevel multiobjective programming problem via exact penalty function approach, Journal or Inequalities and Applications, 2015 (2015), 12pp.
doi: 10.1186/s13660-015-0780-7.
|
[16]
|
I. Nishizaki and M. Sakawa, Stackelberg solutions to multiobjective two-level linear programming problem, Journal of Optimization Theory and Applications, 103 (1999), 161-182.
doi: 10.1023/A:1021729618112.
|
[17]
|
M. S. Osman, M. A. Abo-Sinna, A. H. Amer and O. E. Emam, A multilevel nonlinear multiobjective decision making under fuzziness, Applied Mathematics and Computation, 153 (2004), 239-252.
doi: 10.1016/S0096-3003(03)00628-3.
|
[18]
|
C. O. Pieume, P. Marcotte and L. P. Fotso, Solving bilevel linear multiobjective programming problems, American Journal of Operations Research, (2011), 214-219.
doi: 10.4236/ajor.2011.14024.
|
[19]
|
M. Sakawa and I. Nishizaki, Cooperative and Noncooperative Multi-Level Programming, Springer, Berlin, 2009.
doi: 10.1007/978-1-4419-0676-2.
|
[20]
|
X. Shi and H. Xia, Interactive bilevel multiobjective decision making, Journal of Operations Research Society, 48 (1997), 943-949.
|
[21]
|
X. Shi and H. Xia, Model and interative algorithm of bilevel multiobjective decision making with multiple interconnected decision makers, Journal of Multi-Criteria Decision Analysis, 10 (2001), 27-34.
|
[22]
|
H. W. Tang and X. Z. Qin, Pratical Methods of Optimization, Dalian University of Technology Press, Dalian, China, 2004.
|
[23]
|
C. Teng, L. Li and H. Li, A class of genetic algorithms on bilevel multiobjective decision making problem, Journal of Systems Science and Systems Engineering, 9 (2000), 290-296.
|
[24]
|
L. Vicente and P. Calamai, Bilevel and multilevel programming: A bibligraphy review, Journal of Global Optimization, 5 (1994), 291-306.
doi: 10.1007/BF01096458.
|
[25]
|
J. Ye, Necessary optimality conditions for multiobjective bilevel programs, Mathematics of Operations Reseach, 36 (2011), 165-184.
doi: 10.1287/moor.1100.0480.
|
[26]
|
G. Zhang, J. Lu and T. Dillon, Decentralized multi-objective bilevel decision making with fuzzy demands, Knowledge-Based Systems, 20 (2007), 495-507.
doi: 10.1016/j.knosys.2007.01.003.
|
[27]
|
Y. Zheng and Z. Wan, A solution method for semivectorial bilevel programming problem via penalty method, Journal of Applied Mathematics and Computing, 37 (2011), 207-219.
doi: 10.1007/s12190-010-0430-7.
|