[1]
|
S. P. Aggarwal and C. K. Jaggi, Ordering policies of deteriorating items under permissible delay in payments, The Journal of the Operational Research Society, 46 (1995), 658-662.
doi: 10.2307/2584538.
|
[2]
|
K. Annaduari and R. Uthayakumar, Analysis of partial trade credit financing in a supply chain by EOQ-based model for decaying items with shortage, The International Journal of Advanced Manufacturing Technology, 61 (2012), 1139-1159.
doi: 10.1007/s00170-011-3765-9.
|
[3]
|
K. Annaduari and R. Uthayakumar, Two-echelon inventory model for deteriorating items with credit period dependent demand including shortages under trade credit, Optimization Letters, 7 (2013), 1227-1249.
doi: 10.1007/s11590-012-0499-z.
|
[4]
|
M. Bakker, J. Riezebos and R. H. Teunter, Review of inventory systems with deterioration since 2001, European Journal of Operational Research, 221 (2012), 275-284.
doi: 10.1016/j.ejor.2012.03.004.
|
[5]
|
C. T. Chang, L. Y. Ouyang and J. T. Teng, An EOQ model for deteriorating items under supplier credits linked to ordering quantity, Applied Mathematical Modelling, 27 (2003), 983-996.
doi: 10.1016/S0307-904X(03)00131-8.
|
[6]
|
K. J. Chung and T. S. Huang, The optimal retailer's ordering policies for deteriorating items with limited storage capacity under trade credit financing, International Journal of Production Economics, 106 (2007), 127-145.
doi: 10.1016/j.ijpe.2006.05.008.
|
[7]
|
R. P. Covert and G. C. Philip, An EOQ model for items with Weibull distribution deterioration, AIIE Transitions, 5 (1973), 323-326.
doi: 10.1080/05695557308974918.
|
[8]
|
U. Dave and L. K. Patel, (T, $S_{i}$) policy inventory model for deteriorating items with time proportional demand, Journal of the Operational Research Society, 32 (1981), 137-142.
doi: 10.1057/jors.1981.27.
|
[9]
|
A. P. Engelbrecht, Fundamentals of Computational Swarm Intelligence, John Wiley and Sons Ltd., 2005.
|
[10]
|
P. M. Ghare and G. H. Schrader, A model for exponentially decaying inventory system, Journal of Industrial Engineering, 21 (1963), 449-460.
|
[11]
|
A. Goswami and K. S. Chaudhuri, An EOQ model for deteriorating items with shortages and a linear trend in demand, The Journal of the Operational Research Society, 42 (1991), 1105-1110.
doi: 10.2307/2582957.
|
[12]
|
S. K. Goyal, Economic order quantity under conditions of permissible delay in payment, The Journal of the Operational Research Society, 36 (1985), 335-338.
doi: 10.2307/2582421.
|
[13]
|
P. Guchhait, M. K. Maiti and M. Maiti, Inventory model of a deteriorating item with price and credit linked fuzzy demand : A fuzzy differential equation approach, OPSEARCH, 51 (2014), 321-353.
doi: 10.1007/s12597-013-0153-2.
|
[14]
|
P. Guchhait, M. K. Maiti and M. Maiti, Two storage inventory model of a deteriorating item with variable demand under partial credit period, Applied Soft Computing, 13 (2013), 428-448.
doi: 10.1016/j.asoc.2012.07.028.
|
[15]
|
M. A. Hariga, Optimal EOQ models for deteriorating items with time-varying demand, The Journal of the Operation Research Society, 47 (1996), 1228-1246.
doi: 10.2307/3010036.
|
[16]
|
C. K. Huang, An integrated inventory model under conditions of order processing cost reduction and permissible delay in payments, Applied Mathematical Modelling, 34 (2010), 1352-1359.
doi: 10.1016/j.apm.2009.08.015.
|
[17]
|
D. Huang, L. Q. Ouyang and H. Zhou, Note on: Managing multi-echelon multi-item channels with trade allowances under credit period, International Journal Production Economics, 138 (2012), 117-124.
doi: 10.1016/j.ijpe.2012.03.008.
|
[18]
|
Y. F. Huang, Economic order quantity under conditionally permissible delay in payments, European Journal of Operational Research, 176 (2007), 911-924.
doi: 10.1016/j.ejor.2005.08.017.
|
[19]
|
Y. F. Huang, Optimal retailer's ordering policies in the EOQ model under trade credit financing, Journal of the Operational Research Society, 54 (2003), 1011-1015.
doi: 10.1057/palgrave.jors.2601588.
|
[20]
|
G. C. Mahata, An EPQ-based inventory model for exponentially deteriorating items under retailer partial trade credit policy in supply chain, Expert Systems with Applications, 39 (2012), 3537-3550.
doi: 10.1016/j.eswa.2011.09.044.
|
[21]
|
G. C. Mahata, Retailer's optimal credit period and cycle time in a supply chain for deteriorating items with up-stream and down-stream trade credits, Journal of Industrial Engineering International, 11 (2015), 353-366.
doi: 10.1007/s40092-015-0106-x.
|
[22]
|
G. C. Mahata and S. K. De, Supply chain inventory model for deteriorating items with maximum lifetime and partial trade credit to credit-risk customers, International Journal of Management Science and Engineering Management, 12 (2017), 21-32.
doi: 10.1080/17509653.2015.1109482.
|
[23]
|
P. Mahata and G. C. Mahata, Economic production quantity model with trade credit financing and price-discount offer for non-decreasing time varying demand pattern, International Journal of Procurement Management, 7 (2014), 563-581.
doi: 10.1504/IJPM.2014.064619.
|
[24]
|
M. K. Maiti, A fuzzy genetic algorithm with varying population size to solve an inventory model with credit-linked promotional demand in an imprecise planning horizon, European Journal of Operational Research, 213 (2011), 96-106.
doi: 10.1016/j.ejor.2011.02.014.
|
[25]
|
J. Min, Y. W. Zhou and J. Zhao, An inventory model for deteriorating items under stock-dependent demand and two-level trade credit, Applied Mathematical Modelling, 34 (2010), 3273-3285.
doi: 10.1016/j.apm.2010.02.019.
|
[26]
|
L. Y. Ouyang, J. T. Teng, S. K. Goyal and C. T. Yang, An economic order quantity model for deteriorating items with partially permissible delay in payments to order quantity, European Journal of Operational Research, 194 (2009), 418-431.
doi: 10.1016/j.ejor.2007.12.018.
|
[27]
|
G. C. Philip, A generalized EOQ model for items with Weibull distribution deterioration, AIIE Transactions, 6 (1974), 159-162.
doi: 10.1080/05695557408974948.
|
[28]
|
P. Pramanik, M. K. Maiti and M. Maiti, A supply chain with variable demand under three level trade credit policy, Computers & Industrial Engineering, 106 (2017), 205-221.
doi: 10.1016/j.cie.2017.02.007.
|
[29]
|
P. Pramanik, M. K. Maiti and M. Maiti, An appropriate business strategy for a sale item, OPSEARCH, 55 (2018), 85-106.
doi: 10.1007/s12597-017-0310-0.
|
[30]
|
P. Pramanik, M. K. Maiti and M. Maiti, Three level partial trade credit with promotional cost sharing, Applied Soft Computing, 58 (2017), 553-575.
doi: 10.1016/j.asoc.2017.04.013.
|
[31]
|
B. Sarkar and S. Sarkar, Variable deterioration and demand-An inventory model, Economic Modelling, 31 (2013), 548-556.
doi: 10.1016/j.econmod.2012.11.045.
|
[32]
|
D. Seifert, R. W. Seifert and M. Protopappa-Sieke, A review of trade credit literature: opportunity for research in operations, European Journal of Operational Research, 231 (2013), 245-256.
doi: 10.1016/j.ejor.2013.03.016.
|
[33]
|
B. K. Sett, S. Sarkar, B. Sarkar and W. Y. Yun, Optimal replenishment policy with variable deterioration for fixed-lifetime products, Scientia Iranica, 23 (2016), 2318-2329.
doi: 10.24200/sci.2016.3959.
|
[34]
|
T. Singh and H. Pattanayak, An EOQ model for deteriorating items with linear demand, variable deterioration and partial backlogging, Journal of Service Science and Management, 6 (2013), 186-190.
doi: 10.4236/jssm.2013.62019.
|
[35]
|
S. Tayal, S. R. Singh and R. Sharma, Multi Item Inventory Model for Deteriorating Items with Expiration Date and Allowable Shortages, Indian Journal of Science and Technology, 7 (2014), 463-471.
|
[36]
|
J. T. Teng, Optimal ordering policies for a retailer who offers distinct trade credits to its good and bad customers, International Journal of Production Economics, 119 (2009), 415-423.
doi: 10.1016/j.ijpe.2009.04.004.
|
[37]
|
J. T. Teng, H. J. Chang, C. Y. Dye and C. H. Hung, An optimal replenishment policy for deteriorating items with time-varying demand and partial backlogging, Operation Research Letters, 30 (2002), 387-393.
doi: 10.1016/S0167-6377(02)00150-5.
|
[38]
|
J. T. Teng, M. S. Chern, H. L. Yang and Y. J. Wang, Deterministic lot-size inventory models with shortages and deterioration for fluctuating demand, Operation Research Letters, 24 (1999), 65-72.
doi: 10.1016/S0167-6377(98)00042-X.
|
[39]
|
J. T. Teng and S. K. Goyal, Optimal ordering policies for a retailer in a supply chain with up-stream and down-stream trade credits, Journal of the Operational Research Society, 58 (2007), 1252-1255.
doi: 10.1057/palgrave.jors.2602404.
|
[40]
|
Y. C. Tsao, Managing multi-echelon multi-item channels with trade allowances under credit period, International Journal Production Economics, 127 (2010), 226-237.
doi: 10.1016/j.ijpe.2009.08.010.
|