• Previous Article
    Perturbation analysis of a class of conic programming problems under Jacobian uniqueness conditions
  • JIMO Home
  • This Issue
  • Next Article
    Multi-item deteriorating two-echelon inventory model with price- and stock-dependent demand: A trade-credit policy
July  2019, 15(3): 1375-1385. doi: 10.3934/jimo.2018099

Stability in mean for fuzzy differential equation

College of Mathematics and Information Science, Hebei University, Baoding 071002, China

* Corresponding author: Cuilian You

Received  September 2017 Revised  March 2018 Published  July 2018

Fund Project: The first author is supported by NSFC grant (No.61773150) and Key Lab. of Machine Learning and Computational Intelligence, College of Mathematics and Information Science, Hebei University, Baoding, 071002, China.

Fuzzy differential equation driven by Liu process is an important tool to deal with dynamic system in fuzzy environment. Stability for a fuzzy differential equation plays a key role in differential equation, which means influence of the state of a system to small changes in the initial state. In order to discuss the influence of different initial value on the solution, this paper proposes a concept of stability in mean for fuzzy differential equation driven by Liu process. Some stability theorems for fuzzy differential equation being stable in mean are given. In addition, the concept of stability in mean for fuzzy differential equation driven by Liu process is extended to the case of multi-dimensional. A sufficient condition for multi-dimensional fuzzy differential equation being stable in mean is also provided in this paper.

Citation: Cuilian You, Yangyang Hao. Stability in mean for fuzzy differential equation. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1375-1385. doi: 10.3934/jimo.2018099
References:
[1]

X. Chen, A new existence and uniqueness theorem for fuzzy differential equation, International Journal of Fuzzy Systems, 13 (2011), 148-151.   Google Scholar

[2]

W. Dai, Lipschitz continuity of Liu process, 2008. Available from: http://orsc.edu.cn/process/080831.pdf. Google Scholar

[3]

W. Dai, Reflection principle of Liu process, 2007. Available from: http://orsc.edu.cn/process/071110.pdf. Google Scholar

[4]

J. Gao and X. Gao, A new stock model for credibilistic option pricing, Journal of Uncertain Systems, 4 (2008), 243-247.   Google Scholar

[5]

V. H. Le, A note on the asymptotic stability of fuzzy differential equations, Ukrainian Mathematical Journal, 57 (2005), 1066-1076.  doi: 10.1007/s11253-005-0248-x.  Google Scholar

[6]

B. Liu, Uncertainty Theory, Springer-Verlag, Berlin, 2004. Google Scholar

[7]

B. Liu, Uncertainty Theory 2$^{nd}$ edition, Springer-Verlag, Berlin, 2007. Google Scholar

[8]

B. Liu, Fuzzy process, hybrid process and uncertain process, Journal of Uncertain Systems, 2 (2008), 3-16.   Google Scholar

[9]

B. Liu and Y. K. Liu, Expected value of fuzzy variable and fuzzy expected value models, IEEE Transactions on Fuzzy Systems, 10 (2002), 445-450.   Google Scholar

[10]

M. Mizukoshi, Stability of fuzzy dynamic systems, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 17 (2009), 69-83.  doi: 10.1142/S0218488509005747.  Google Scholar

[11]

Z. Qin and M. Wen, On analytic functions of complex Liu process, Journal of Intelligent and Fuzzy Systems, 28 (2015), 1627-1633.   Google Scholar

[12]

Z. QinM. Bai and R. Dan, A fuzzy control system with application to production planning problems, Information Sciences, 181 (2011), 1018-1027.  doi: 10.1016/j.ins.2010.10.029.  Google Scholar

[13]

Z. Qin and X. Li, Option pricing formula for fuzzy financial market, Journal of Uncertain Systems, 1 (2008), 17-21.   Google Scholar

[14]

H. Tian and J. Guo, Stability of fuzzy differential equations, Journal of Taiyuan Normal University(Natural Science Edition), 11 (2012), 7-9.   Google Scholar

[15]

C. YouH. Huo and W. Wang, Multi-dimensional Liu process, differential and integral, East Asian Mathematical Journal, 29 (2013), 13-22.  doi: 10.7858/eamj.2013.002.  Google Scholar

[16]

C. You and G. Wang, Properties of a new kind of fuzzy integral, Journal of Hebei University(Natural Science Edition), 31 (2011), 337-340.   Google Scholar

[17]

C. YouH. Ma and H. Huo, A new kind of generalized fuzzy integrals, Journal of Nonlinear Science and Applications, 3 (2016), 1396-1401.  doi: 10.22436/jnsa.009.03.63.  Google Scholar

[18]

C. YouW. Wang and H. Huo, Existence and uniqueness theorems for fuzzy differential equations, Journal of Uncertain Systems, 7 (2013), 303-315.   Google Scholar

[19]

C. You and W. Wang, Some properties of complex fuzzy integral, Mathematical Problems in Engineering, 2015 (2015), Art. ID 290539, 7 pp. doi: 10.1155/2015/290539.  Google Scholar

[20]

Y. Zhu, A fuzzy optimal control model, Journal of Uncertain Systems, 3 (2009), 270-279.   Google Scholar

[21]

Y. Zhu, Stability analysis of fuzzy linear differential equations, Fuzzy Optimization and Decision Making, 9 (2010), 169-186.  doi: 10.1007/s10700-010-9080-3.  Google Scholar

show all references

References:
[1]

X. Chen, A new existence and uniqueness theorem for fuzzy differential equation, International Journal of Fuzzy Systems, 13 (2011), 148-151.   Google Scholar

[2]

W. Dai, Lipschitz continuity of Liu process, 2008. Available from: http://orsc.edu.cn/process/080831.pdf. Google Scholar

[3]

W. Dai, Reflection principle of Liu process, 2007. Available from: http://orsc.edu.cn/process/071110.pdf. Google Scholar

[4]

J. Gao and X. Gao, A new stock model for credibilistic option pricing, Journal of Uncertain Systems, 4 (2008), 243-247.   Google Scholar

[5]

V. H. Le, A note on the asymptotic stability of fuzzy differential equations, Ukrainian Mathematical Journal, 57 (2005), 1066-1076.  doi: 10.1007/s11253-005-0248-x.  Google Scholar

[6]

B. Liu, Uncertainty Theory, Springer-Verlag, Berlin, 2004. Google Scholar

[7]

B. Liu, Uncertainty Theory 2$^{nd}$ edition, Springer-Verlag, Berlin, 2007. Google Scholar

[8]

B. Liu, Fuzzy process, hybrid process and uncertain process, Journal of Uncertain Systems, 2 (2008), 3-16.   Google Scholar

[9]

B. Liu and Y. K. Liu, Expected value of fuzzy variable and fuzzy expected value models, IEEE Transactions on Fuzzy Systems, 10 (2002), 445-450.   Google Scholar

[10]

M. Mizukoshi, Stability of fuzzy dynamic systems, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 17 (2009), 69-83.  doi: 10.1142/S0218488509005747.  Google Scholar

[11]

Z. Qin and M. Wen, On analytic functions of complex Liu process, Journal of Intelligent and Fuzzy Systems, 28 (2015), 1627-1633.   Google Scholar

[12]

Z. QinM. Bai and R. Dan, A fuzzy control system with application to production planning problems, Information Sciences, 181 (2011), 1018-1027.  doi: 10.1016/j.ins.2010.10.029.  Google Scholar

[13]

Z. Qin and X. Li, Option pricing formula for fuzzy financial market, Journal of Uncertain Systems, 1 (2008), 17-21.   Google Scholar

[14]

H. Tian and J. Guo, Stability of fuzzy differential equations, Journal of Taiyuan Normal University(Natural Science Edition), 11 (2012), 7-9.   Google Scholar

[15]

C. YouH. Huo and W. Wang, Multi-dimensional Liu process, differential and integral, East Asian Mathematical Journal, 29 (2013), 13-22.  doi: 10.7858/eamj.2013.002.  Google Scholar

[16]

C. You and G. Wang, Properties of a new kind of fuzzy integral, Journal of Hebei University(Natural Science Edition), 31 (2011), 337-340.   Google Scholar

[17]

C. YouH. Ma and H. Huo, A new kind of generalized fuzzy integrals, Journal of Nonlinear Science and Applications, 3 (2016), 1396-1401.  doi: 10.22436/jnsa.009.03.63.  Google Scholar

[18]

C. YouW. Wang and H. Huo, Existence and uniqueness theorems for fuzzy differential equations, Journal of Uncertain Systems, 7 (2013), 303-315.   Google Scholar

[19]

C. You and W. Wang, Some properties of complex fuzzy integral, Mathematical Problems in Engineering, 2015 (2015), Art. ID 290539, 7 pp. doi: 10.1155/2015/290539.  Google Scholar

[20]

Y. Zhu, A fuzzy optimal control model, Journal of Uncertain Systems, 3 (2009), 270-279.   Google Scholar

[21]

Y. Zhu, Stability analysis of fuzzy linear differential equations, Fuzzy Optimization and Decision Making, 9 (2010), 169-186.  doi: 10.1007/s10700-010-9080-3.  Google Scholar

[1]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[2]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[3]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[4]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[5]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[6]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[7]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[8]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020275

[9]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[10]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[11]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[12]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[13]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[14]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[15]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[16]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[17]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[18]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[19]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[20]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (132)
  • HTML views (1031)
  • Cited by (0)

Other articles
by authors

[Back to Top]