• Previous Article
    Perturbation analysis of a class of conic programming problems under Jacobian uniqueness conditions
  • JIMO Home
  • This Issue
  • Next Article
    Multi-item deteriorating two-echelon inventory model with price- and stock-dependent demand: A trade-credit policy
July  2019, 15(3): 1375-1385. doi: 10.3934/jimo.2018099

Stability in mean for fuzzy differential equation

College of Mathematics and Information Science, Hebei University, Baoding 071002, China

* Corresponding author: Cuilian You

Received  September 2017 Revised  March 2018 Published  July 2018

Fund Project: The first author is supported by NSFC grant (No.61773150) and Key Lab. of Machine Learning and Computational Intelligence, College of Mathematics and Information Science, Hebei University, Baoding, 071002, China.

Fuzzy differential equation driven by Liu process is an important tool to deal with dynamic system in fuzzy environment. Stability for a fuzzy differential equation plays a key role in differential equation, which means influence of the state of a system to small changes in the initial state. In order to discuss the influence of different initial value on the solution, this paper proposes a concept of stability in mean for fuzzy differential equation driven by Liu process. Some stability theorems for fuzzy differential equation being stable in mean are given. In addition, the concept of stability in mean for fuzzy differential equation driven by Liu process is extended to the case of multi-dimensional. A sufficient condition for multi-dimensional fuzzy differential equation being stable in mean is also provided in this paper.

Citation: Cuilian You, Yangyang Hao. Stability in mean for fuzzy differential equation. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1375-1385. doi: 10.3934/jimo.2018099
References:
[1]

X. Chen, A new existence and uniqueness theorem for fuzzy differential equation, International Journal of Fuzzy Systems, 13 (2011), 148-151.   Google Scholar

[2]

W. Dai, Lipschitz continuity of Liu process, 2008. Available from: http://orsc.edu.cn/process/080831.pdf. Google Scholar

[3]

W. Dai, Reflection principle of Liu process, 2007. Available from: http://orsc.edu.cn/process/071110.pdf. Google Scholar

[4]

J. Gao and X. Gao, A new stock model for credibilistic option pricing, Journal of Uncertain Systems, 4 (2008), 243-247.   Google Scholar

[5]

V. H. Le, A note on the asymptotic stability of fuzzy differential equations, Ukrainian Mathematical Journal, 57 (2005), 1066-1076.  doi: 10.1007/s11253-005-0248-x.  Google Scholar

[6]

B. Liu, Uncertainty Theory, Springer-Verlag, Berlin, 2004. Google Scholar

[7]

B. Liu, Uncertainty Theory 2$^{nd}$ edition, Springer-Verlag, Berlin, 2007. Google Scholar

[8]

B. Liu, Fuzzy process, hybrid process and uncertain process, Journal of Uncertain Systems, 2 (2008), 3-16.   Google Scholar

[9]

B. Liu and Y. K. Liu, Expected value of fuzzy variable and fuzzy expected value models, IEEE Transactions on Fuzzy Systems, 10 (2002), 445-450.   Google Scholar

[10]

M. Mizukoshi, Stability of fuzzy dynamic systems, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 17 (2009), 69-83.  doi: 10.1142/S0218488509005747.  Google Scholar

[11]

Z. Qin and M. Wen, On analytic functions of complex Liu process, Journal of Intelligent and Fuzzy Systems, 28 (2015), 1627-1633.   Google Scholar

[12]

Z. QinM. Bai and R. Dan, A fuzzy control system with application to production planning problems, Information Sciences, 181 (2011), 1018-1027.  doi: 10.1016/j.ins.2010.10.029.  Google Scholar

[13]

Z. Qin and X. Li, Option pricing formula for fuzzy financial market, Journal of Uncertain Systems, 1 (2008), 17-21.   Google Scholar

[14]

H. Tian and J. Guo, Stability of fuzzy differential equations, Journal of Taiyuan Normal University(Natural Science Edition), 11 (2012), 7-9.   Google Scholar

[15]

C. YouH. Huo and W. Wang, Multi-dimensional Liu process, differential and integral, East Asian Mathematical Journal, 29 (2013), 13-22.  doi: 10.7858/eamj.2013.002.  Google Scholar

[16]

C. You and G. Wang, Properties of a new kind of fuzzy integral, Journal of Hebei University(Natural Science Edition), 31 (2011), 337-340.   Google Scholar

[17]

C. YouH. Ma and H. Huo, A new kind of generalized fuzzy integrals, Journal of Nonlinear Science and Applications, 3 (2016), 1396-1401.  doi: 10.22436/jnsa.009.03.63.  Google Scholar

[18]

C. YouW. Wang and H. Huo, Existence and uniqueness theorems for fuzzy differential equations, Journal of Uncertain Systems, 7 (2013), 303-315.   Google Scholar

[19]

C. You and W. Wang, Some properties of complex fuzzy integral, Mathematical Problems in Engineering, 2015 (2015), Art. ID 290539, 7 pp. doi: 10.1155/2015/290539.  Google Scholar

[20]

Y. Zhu, A fuzzy optimal control model, Journal of Uncertain Systems, 3 (2009), 270-279.   Google Scholar

[21]

Y. Zhu, Stability analysis of fuzzy linear differential equations, Fuzzy Optimization and Decision Making, 9 (2010), 169-186.  doi: 10.1007/s10700-010-9080-3.  Google Scholar

show all references

References:
[1]

X. Chen, A new existence and uniqueness theorem for fuzzy differential equation, International Journal of Fuzzy Systems, 13 (2011), 148-151.   Google Scholar

[2]

W. Dai, Lipschitz continuity of Liu process, 2008. Available from: http://orsc.edu.cn/process/080831.pdf. Google Scholar

[3]

W. Dai, Reflection principle of Liu process, 2007. Available from: http://orsc.edu.cn/process/071110.pdf. Google Scholar

[4]

J. Gao and X. Gao, A new stock model for credibilistic option pricing, Journal of Uncertain Systems, 4 (2008), 243-247.   Google Scholar

[5]

V. H. Le, A note on the asymptotic stability of fuzzy differential equations, Ukrainian Mathematical Journal, 57 (2005), 1066-1076.  doi: 10.1007/s11253-005-0248-x.  Google Scholar

[6]

B. Liu, Uncertainty Theory, Springer-Verlag, Berlin, 2004. Google Scholar

[7]

B. Liu, Uncertainty Theory 2$^{nd}$ edition, Springer-Verlag, Berlin, 2007. Google Scholar

[8]

B. Liu, Fuzzy process, hybrid process and uncertain process, Journal of Uncertain Systems, 2 (2008), 3-16.   Google Scholar

[9]

B. Liu and Y. K. Liu, Expected value of fuzzy variable and fuzzy expected value models, IEEE Transactions on Fuzzy Systems, 10 (2002), 445-450.   Google Scholar

[10]

M. Mizukoshi, Stability of fuzzy dynamic systems, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 17 (2009), 69-83.  doi: 10.1142/S0218488509005747.  Google Scholar

[11]

Z. Qin and M. Wen, On analytic functions of complex Liu process, Journal of Intelligent and Fuzzy Systems, 28 (2015), 1627-1633.   Google Scholar

[12]

Z. QinM. Bai and R. Dan, A fuzzy control system with application to production planning problems, Information Sciences, 181 (2011), 1018-1027.  doi: 10.1016/j.ins.2010.10.029.  Google Scholar

[13]

Z. Qin and X. Li, Option pricing formula for fuzzy financial market, Journal of Uncertain Systems, 1 (2008), 17-21.   Google Scholar

[14]

H. Tian and J. Guo, Stability of fuzzy differential equations, Journal of Taiyuan Normal University(Natural Science Edition), 11 (2012), 7-9.   Google Scholar

[15]

C. YouH. Huo and W. Wang, Multi-dimensional Liu process, differential and integral, East Asian Mathematical Journal, 29 (2013), 13-22.  doi: 10.7858/eamj.2013.002.  Google Scholar

[16]

C. You and G. Wang, Properties of a new kind of fuzzy integral, Journal of Hebei University(Natural Science Edition), 31 (2011), 337-340.   Google Scholar

[17]

C. YouH. Ma and H. Huo, A new kind of generalized fuzzy integrals, Journal of Nonlinear Science and Applications, 3 (2016), 1396-1401.  doi: 10.22436/jnsa.009.03.63.  Google Scholar

[18]

C. YouW. Wang and H. Huo, Existence and uniqueness theorems for fuzzy differential equations, Journal of Uncertain Systems, 7 (2013), 303-315.   Google Scholar

[19]

C. You and W. Wang, Some properties of complex fuzzy integral, Mathematical Problems in Engineering, 2015 (2015), Art. ID 290539, 7 pp. doi: 10.1155/2015/290539.  Google Scholar

[20]

Y. Zhu, A fuzzy optimal control model, Journal of Uncertain Systems, 3 (2009), 270-279.   Google Scholar

[21]

Y. Zhu, Stability analysis of fuzzy linear differential equations, Fuzzy Optimization and Decision Making, 9 (2010), 169-186.  doi: 10.1007/s10700-010-9080-3.  Google Scholar

[1]

İsmail Özcan, Sirma Zeynep Alparslan Gök. On cooperative fuzzy bubbly games. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021010

[2]

Jan Rychtář, Dewey T. Taylor. Moran process and Wright-Fisher process favor low variability. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3491-3504. doi: 10.3934/dcdsb.2020242

[3]

Alexander Tolstonogov. BV solutions of a convex sweeping process with a composed perturbation. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021012

[4]

Cheng-Kai Hu, Fung-Bao Liu, Hong-Ming Chen, Cheng-Feng Hu. Network data envelopment analysis with fuzzy non-discretionary factors. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1795-1807. doi: 10.3934/jimo.2020046

[5]

Haripriya Barman, Magfura Pervin, Sankar Kumar Roy, Gerhard-Wilhelm Weber. Back-ordered inventory model with inflation in a cloudy-fuzzy environment. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1913-1941. doi: 10.3934/jimo.2020052

[6]

Xiaohong Li, Mingxin Sun, Zhaohua Gong, Enmin Feng. Multistage optimal control for microbial fed-batch fermentation process. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021040

[7]

José Antonio Carrillo, Martin Parisot, Zuzanna Szymańska. Mathematical modelling of collagen fibres rearrangement during the tendon healing process. Kinetic & Related Models, 2021, 14 (2) : 283-301. doi: 10.3934/krm.2021005

[8]

Mostafa Ghelichi, A. M. Goltabar, H. R. Tavakoli, A. Karamodin. Neuro-fuzzy active control optimized by Tug of war optimization method for seismically excited benchmark highway bridge. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 333-351. doi: 10.3934/naco.2020029

[9]

Sumon Sarkar, Bibhas C. Giri. Optimal lot-sizing policy for a failure prone production system with investment in process quality improvement and lead time variance reduction. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021048

[10]

Zengyun Wang, Jinde Cao, Zuowei Cai, Lihong Huang. Finite-time stability of impulsive differential inclusion: Applications to discontinuous impulsive neural networks. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2677-2692. doi: 10.3934/dcdsb.2020200

[11]

Emanuela R. S. Coelho, Valéria N. Domingos Cavalcanti, Vinicius A. Peralta. Exponential stability for a transmission problem of a nonlinear viscoelastic wave equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021055

[12]

Simão Correia, Mário Figueira. A generalized complex Ginzburg-Landau equation: Global existence and stability results. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021056

[13]

Jihoon Lee, Nguyen Thanh Nguyen. Gromov-Hausdorff stability of reaction diffusion equations with Robin boundary conditions under perturbations of the domain and equation. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1263-1296. doi: 10.3934/cpaa.2021020

[14]

Andrew Comech, Elena Kopylova. Orbital stability and spectral properties of solitary waves of Klein–Gordon equation with concentrated nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021063

[15]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[16]

Abdulrazzaq T. Abed, Azzam S. Y. Aladool. Applying particle swarm optimization based on Padé approximant to solve ordinary differential equation. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021008

[17]

Seddigheh Banihashemi, Hossein Jafaria, Afshin Babaei. A novel collocation approach to solve a nonlinear stochastic differential equation of fractional order involving a constant delay. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021025

[18]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023

[19]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[20]

Skyler Simmons. Stability of Broucke's isosceles orbit. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3759-3779. doi: 10.3934/dcds.2021015

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (144)
  • HTML views (1034)
  • Cited by (0)

Other articles
by authors

[Back to Top]