\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Performance analysis of a discrete-time $ Geo/G/1$ retrial queue with non-preemptive priority, working vacations and vacation interruption

  • * Corresponding author: Shaojun Lan

    * Corresponding author: Shaojun Lan 
Abstract Full Text(HTML) Figure(9) / Table(1) Related Papers Cited by
  • This paper is concerned with a discrete-time $ Geo/G/1$ retrial queueing system with non-preemptive priority, working vacations and vacation interruption where the service times and retrial times are arbitrarily distributed. If an arriving customer finds the server free, his service commences immediately. Otherwise, he either joins the priority queue with probability $ α$, or leaves the service area and enters the retrial group (orbit) with probability $ \mathit{\bar{\alpha }}\left( = 1-\alpha \right)$. Customers in the priority queue have non-preemptive priority over those in the orbit. Whenever the system becomes empty, the server takes working vacation during which the server can serve customers at a lower service rate. If there are customers in the system at the epoch of a service completion, the server resumes the normal working level whether the working vacation ends or not (i.e., working vacation interruption occurs). Otherwise, the server proceeds with the vacation. Employing supplementary variable method and generating function technique, we analyze the underlying Markov chain of the considered queueing model, and obtain the stationary distribution of the Markov chain, the generating functions for the number of customers in the priority queue, in the orbit and in the system, as well as some crucial performance measures in steady state. Furthermore, the relation between our discrete-time queue and its continuous-time counterpart is investigated. Finally, some numerical examples are provided to explore the effect of various system parameters on the queueing characteristics.

    Mathematics Subject Classification: Primary: 60K25, 68M20; Secondary: 90B22.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Various time epochs in an early arrival system (EAS)

    Figure 2.  The effect of $\alpha $ on $p(0,0,0)$ for different values of $r$, $\chi _b = 0.7$, $\chi _v = 0.4$, $\lambda = 0.2$, $\theta = 0.3$

    Figure 3.  The effect of $\chi _v $ on $p(0,0,0)$ for different values of $\theta $, $\chi _b = 0.7$, $\alpha = 0.5$, $\lambda = 0.2$, $r = 0.35$

    Figure 4.  The effect of $\alpha $ on $E\left[ {L_1 } \right]$ for different values of $\lambda $, $\chi _b = 0.7$, $\chi _v = 0.4$, $r = 0.35$, $\theta = 0.3$

    Figure 5.  The effect of $\alpha $ on $E\left[ {L_2 } \right]$ for different values of $\lambda $, $\chi _b = 0.7$, $\chi _v = 0.4$, $r = 0.35$, $\theta = 0.3$

    Figure 6.  The effect of $\chi _v $ on $E[L]$ for different values of $\theta $, $\chi _b = 0.7$, $\alpha = 0.5$, $\lambda = 0.2$, $r = 0.35$

    Figure 7.  $E[L]$ versus $\chi _v $ and $\lambda $, $\chi _b = 0.7$, $\alpha = 0.5$, $\theta = 0.3$, $r = 0.35$

    Figure 8.  $E[L]$ versus $r$ and $\lambda $, $\chi _b = 0.7$, $\chi _v = 0.4$, $\alpha = 0.5$, $\theta = 0.3$

    Figure 9.  The effect of $\alpha $ on the expected operating cost per unit time

    Table 1.  The parabolic method in searching for the optimum solution

    No. of iterations
    0 1 2 3 4 5
    $\alpha^{(l)} $ 0.55000 0.60000 0.61667 0.61712 0.61734 0.61735
    $\alpha^{(m)} $ 0.60000 0.61667 0.61712 0.61734 0.61735 0.61735
    $\alpha^{(r)} $ 0.65000 0.65000 0.65000 0.65000 0.65000 0.65000
    $TC\left( {\alpha^{(l)} } \right)$ 443.08917 443.06412 443.06226 443.06226 443.06226 443.06226
    $TC\left( {\alpha^{(m)} } \right)$ 443.06412 443.06226 443.06226 443.06226 443.06226 443.06226
    $TC\left( {\alpha^{(r)} } \right)$ 443.06912 443.06912 443.06912 443.06912 443.06912 443.06912
    $\alpha^\ast $ 0.61667 0.61712 0.61734 0.61735 0.61735 0.61735
    $TC\left( {\alpha^\ast } \right)$ 443.06226 443.06226 443.06226 443.06226 443.06226 443.06226
    Tolerance 1.66744×10$^{-2}$ 4.40785×10$^{-4}$ 2.27516×10$^{-4}$ 8.98158×10$^{-6}$ 3.20017×10$^{-6}$ 1.62729×10$^{-7}$
     | Show Table
    DownLoad: CSV
  • [1] A. K. Aboul-HassanS. I. Rabia and F. A. Taboly, Performance evaluation of a discrete-time $ Geo^{[X]}/G/1$ retrial queue with general retrial times, Computers & Mathematics with Applications, 58 (2009), 548-557.  doi: 10.1016/j.camwa.2009.03.101.
    [2] J. R. Artalejo, A classified bibliography of research on retrial queues: Progress in 1990-1999, Top, 7 (1999), 187-211.  doi: 10.1007/BF02564721.
    [3] J. R. Artalejo, Accessible bibliography on retrial queues: Progress in 2000-2009, Mathematical and Computer Modelling, 51 (2010), 1071-1081.  doi: 10.1016/j.mcm.2009.12.011.
    [4] J. R. Artalejo and A. Gómez-Corral, Retrial Queueing Systems: A Computational Approach, Springer, Berlin, 2008. doi: 10.1007/978-3-540-78725-9.
    [5] I. Atencia and P. Moreno, A discrete-time $ Geo/G/1$ retrial queue with general retrial times, Queueing Systems, 48 (2004), 5-21.  doi: 10.1023/B:QUES.0000039885.12490.02.
    [6] I. Atencia and P. Moreno, A discrete-time $ Geo/G/1$ retrial queue with the server subject to starting failures, Annals of Operations Research, 141 (2006), 85-107.  doi: 10.1007/s10479-006-5295-7.
    [7] I. Atencia and P. Moreno, A single-server retrial queue with general retrial times and Bernoulli schedule, Applied Mathematics and Computation, 162 (2005), 855-880.  doi: 10.1016/j.amc.2003.12.128.
    [8] H. Bruneel and B. G. Kim, Discrete-Time Models for Communication Systems Including ATM, Kluwer Academic Publishers, Boston, 1993. doi: 10.1007/978-1-4615-3130-2.
    [9] B. D. Choi and J. W. Kim, Discrete-time $ Geo_1, Geo_2/G/1$ retrial queueing systems with two types of calls, Computers & Mathematics with Applications, 33 (1997), 79-88.  doi: 10.1016/S0898-1221(97)00078-3.
    [10] I. Dimitriou, A mixed priority retrial queue with negative arrivals, unreliable server and multiple vacations, Applied Mathematical Modelling, 37 (2013), 1295-1309.  doi: 10.1016/j.apm.2012.04.011.
    [11] I. Dimitriou, A two class retrial system with coupled orbit queues, Probability in the Engineering and Informational Sciences, 31 (2017), 139-179.  doi: 10.1017/S0269964816000528.
    [12] I. Dimitriou, A queueing model with two types of retrial customers and paired services, Annals of Operations Research, 238 (2016), 123-143.  doi: 10.1007/s10479-015-2059-2.
    [13] I. Dimitriou, Analysis of a priority retrial queue with dependent vacation scheme and application to energy saving in wireless communication systems, The Computer Journal, 56 (2013), 1363-1380. 
    [14] T. V. Do, $ M/M/1$ retrial queue with working vacations, Acta Informatica, 47 (2010), 67-75.  doi: 10.1007/s00236-009-0110-y.
    [15] B. T. Doshi, Queueing systems with vacation-a survey, Queueing Systems, 1 (1986), 29-66.  doi: 10.1007/BF01149327.
    [16] A. DudinC. S. KimS. Dudin and O. Dudina, Priority retrial queueing model operating in random environment with varying number and reservation of servers, Applied Mathematics and Computation, 269 (2015), 674-690.  doi: 10.1016/j.amc.2015.08.005.
    [17] G. I. Falin, A survey of retrial queues, Queueing Systems, 7 (1990), 127-167.  doi: 10.1007/BF01158472.
    [18] G. I. Falin and J. G. C. Templeton, Retrial Queues, Chapman & Hall, London, 1997.
    [19] A. GandhiV. GuptaM. Harchol-Balter and M. A. Kozuch, Optimality analysis of energy-performance trade-off for server farm management, Performance Evaluation, 67 (2010), 1155-1171. 
    [20] S. Gao and J. Wang, On a discrete-time $ GI^X/Geo/1/N-G$ queue with randomized working vacations and at most J vacations, Journal of Industrial and Management Optimization, 11 (2015), 779-806.  doi: 10.3934/jimo.2015.11.779.
    [21] S. Gao and J. Wang, Discrete-time $ Geo^X/G/1$ retrial queue with general retrial times, working vacations and vacation interruption, Quality Technology & Quantitative Management, 10 (2013), 495-512. 
    [22] J. J. Hunter, Mathematical Techniques of Applied Probability, Vol. 2, Discrete Time Models: Techniques and Applications, Academic Press, New York, 1983.
    [23] M. JainG. C. Sharma and R. Sharma, Maximum entropy approach for discrete-time unreliable server $ Geo^X/Geo/1$ queue with working vacation, International Journal of Mathematics in Operational Research, 4 (2012), 56-77.  doi: 10.1504/IJMOR.2012.044473.
    [24] M. JainA. Bhagat and C. Shekhar, Double orbit finite retrial queues with priority customers and service interruptions, Applied Mathematics and Computation, 253 (2015), 324-344.  doi: 10.1016/j.amc.2014.12.066.
    [25] J. C. KeC. H. Wu and Z. G. Zhang, Recent developments in vacation queueing models: a short survey, International Journal of Operations Research, 7 (2010), 3-8. 
    [26] P. V. Laxmi and K. Jyothsna, Finite buffer $ GI/Geo/1$ batch servicing queue with multiple working vacations, RAIRO-Operations Research, 48 (2014), 521-543.  doi: 10.1051/ro/2014022.
    [27] H. Li and T. Yang, $ Geo/G/1$ discrete time retrial queue with Bernoulli schedule, European Journal of Operational Research, 111 (1998), 629-649.  doi: 10.1016/S0377-2217(97)90357-X.
    [28] J. LiN. Tian and W. Liu, The discrete-time $ GI/Geo/1$ queue with multiple working vacations, Queueing Systems, 56 (2007), 53-63.  doi: 10.1007/s11134-007-9030-0.
    [29] J. Li, Analysis of the discrete-time $Geo/G/1$ working vacation queue and its application to network scheduling, Computers & Industrial Engineering, 65 (2013), 594-604.  doi: 10.1016/j.cie.2013.04.009.
    [30] T. LiZ. Wang and Z. Liu, $Geo/Geo/1$ retrial queue with working vacations and vacation interruption, Journal of Applied Mathematics and Computing, 39 (2012), 131-143.  doi: 10.1007/s12190-011-0516-x.
    [31] T. LiZ. Liu and Z. Wang, $M/M/1$ retrial queue with collisions and working vacation interruption under N-policy, RAIRO-Operations Research, 46 (2012), 355-371.  doi: 10.1051/ro/2012022.
    [32] Z. Liu and S. Gao, Discrete-time $Geo_1, Geo^X_2/G_1, G_2/1$ retrial queue with two classes of customers and feedback, Mathematical and Computer Modelling, 53 (2011), 1208-1220.  doi: 10.1016/j.mcm.2010.11.090.
    [33] T. Phung-Duc, Retrial queueing models: A survey on theory and applications, in Stochastic Operations Research in Business and Industry (eds. T. Dohi, K. Ano and S. Kasahara), World Scientific Publisher, (2017), 1–26.
    [34] T. Phung-Duc, Single server retrial queues with setup time, Journal of Industrial and Management Optimization, 13 (2017), 1329-1345.  doi: 10.3934/jimo.2016075.
    [35] T. Phung-Duc, Exact solutions for $M/M/c/$ Setup queues, Telecommunication Systems, 64 (2017), 309-324.  doi: 10.1007/s11235-016-0177-z.
    [36] T. Phung-DucW. Rogiest and S. Wittevrongel, Single server retrial queues with speed scaling: Analysis and performance evaluation, Journal of Industrial and Management Optimization, 13 (2017), 1927-1943.  doi: 10.3934/jimo.2017025.
    [37] T. Phung-Duc and K. Kawanishi, Impacts of retrials on power-saving policy in data centers, Proceedings of the 11th International Conference on Queueing Theory and Network Applications, 22 (2016), 1-4.  doi: 10.1145/3016032.3016047.
    [38] L. R. Ronald, Optimization in Operations Research, Prentice Hall, New Jersey, 1997.
    [39] L. D. Servi and S. G. Finn, $ M/M/1$ queue with working vacations ($ M/M/1/WV$), Performance Evaluation, 50 (2002), 41-52.  doi: 10.1016/S0166-5316(02)00057-3.
    [40] H. Takagi, Queueing Analysis: A Foundation of Performance Evaluation, North-Holland Publishing Co., Amsterdam, 1993.
    [41] N. Tian and Z. G. Zhang, Vacation Queueing Models: Theory and Applications, Springer, New York, 2006.
    [42] S. Upadhyaya, Working vacation policy for a discrete-time $Geo^X/Geo/1$ retrial queue, OPSEARCH, 52 (2015), 650-669.  doi: 10.1007/s12597-015-0200-2.
    [43] J. Walraevens, D. Claeys and T. Phung-Duc, Asymptotics of queue length distributions in priority retrial queues, preprint, arXiv: 1801.06993.
    [44] J. Wang and Q. Zhao, A discrete-time $Geo/G/1$ retrial queue with starting failures and second optional service, Computers & Mathematics with Applications, 53 (2007), 115-127.  doi: 10.1016/j.camwa.2006.10.024.
    [45] M. E. Woodward, Communication and Computer Networks: Modelling with Discrete-Time Queues, IEEE Computer Society Press, Los Alamitos, California, 1994.
    [46] J. WuZ. Liu and Y. Peng, A discrete-time $Geo/G/1$ retrial queue with preemptive resume and collisions, Applied Mathematical Modelling, 35 (2011), 837-847.  doi: 10.1016/j.apm.2010.07.039.
    [47] D. A. Wu and H. Takagi, $M/G/1$ queue with multiple working vacations, Performance Evaluation, 63 (2006), 654-681. 
    [48] T. Yang and J. G. C. Templeton, A survey on retrial queues, Queueing Systems, 2 (1987), 201-233.  doi: 10.1007/BF01158899.
    [49] T. Yang and H. Li, On the steady-state queue size distribution of the discrete-time $Geo/G/1$ queue with repeated customers, Queueing Systems, 21 (1995), 199-215.  doi: 10.1007/BF01158581.
    [50] M. YuY. TangY. Fu and L. Pan, $ GI/Geom/1/N/MWV$ queue with changeover time and searching for the optimum service rate in working vacation period, Journal of Computational and Applied Mathematics, 235 (2011), 2170-2184.  doi: 10.1016/j.cam.2010.10.013.
  • 加载中

Figures(9)

Tables(1)

SHARE

Article Metrics

HTML views(1290) PDF downloads(335) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return