• Previous Article
    Multiperiod portfolio optimization for asset-liability management with quadratic transaction costs
  • JIMO Home
  • This Issue
  • Next Article
    Online and offline cooperation under buy-online, pick-up-in-store: Pricing and inventory decisions
July  2019, 15(3): 1473-1492. doi: 10.3934/jimo.2018105

Risk measure optimization: Perceived risk and overconfidence of structured product investors

1. 

School of Business, Central South University, Changsha, China

2. 

School of Mathematics and Statistics, Central South University, Changsha, China

3. 

Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China

* Corresponding author: Zongrun Wang

Received  January 2018 Revised  March 2018 Published  July 2019 Early access  July 2018

In financial optimization, it is important to quantify the risk of structured financial products. This paper quantifies the risk of structured financial products by perceived risk measures based on a standard measure of risk, and then we construct the risk perception and decision-making models of individual investors considering structured products. Moreover, based on bullish and bearish binary structured products, we introduce the psychological bias of overconfidence to explore how this bias affects investors' perceived risk. This study finds that overconfident investors believe in private signals and underestimate the variance of noise in private signals, which affects their expectation of the underlying asset price of structured financial products. Furthermore, overconfidence bias leads investors to overestimate the probability of obtaining a better return. With the increase in overconfidence, the overestimation of the probability is intensified, which eventually leads to lower perceived risk.

Citation: Xi Chen, Zongrun Wang, Songhai Deng, Yong Fang. Risk measure optimization: Perceived risk and overconfidence of structured product investors. Journal of Industrial and Management Optimization, 2019, 15 (3) : 1473-1492. doi: 10.3934/jimo.2018105
References:
[1]

B. N. Adebambo and X. S. Yan, Momentum, reversals, and fund manager overconfidence, Financial Management, 45 (2016), 609-639.  doi: 10.1111/fima.12128.

[2]

A. A. AlalwanY. K. DwivediN. P. Rana and M. D. Williams, Consumer adoption of mobile banking in jordan: Examining the role of usefulness, ease of use, perceived risk and self-efficacy, Journal of Enterprise Information Management, 29 (2016), 118-139.  doi: 10.1108/JEIM-04-2015-0035.

[3]

F. H. Barron, Polynomial psychophysics of risk for selected business faculty, Acta Psychologica, 40 (1976), 127-137.  doi: 10.1016/0001-6918(76)90004-4.

[4]

D. E. Bell, Disappointment in decision making under uncertainty, Operations Research, 33 (1985), 1-27.  doi: 10.1287/opre.33.1.1.

[5]

M. Bennet, Complexity and its discontents: recurring legal concerns with structured products, New York University Journal of Law & Business, 7 (2010), 811-843. 

[6]

K. Bregu, Overconfidence and (Over) Trading: The Effect of Feedback on Trading Behavior, Technical report, University of Arkansas, 2016.

[7]

J. C. ButlerJ. S. Dyer and J. Jia, An empirical investigation of the assumptions of risk-value models, Journal of Risk and Uncertainty, 30 (2005), 133-156.  doi: 10.1007/s11166-005-6562-8.

[8]

C. Celerier and B. Vallee, Catering to investors through security design: Headline rate and complexity, Quarterly Journal of Economics, 132 (2017), 1469-1508. 

[9]

A. Cillo and P. Delquié, Mean-risk analysis with enhanced behavioral content, European Journal of Operational Research, 239 (2014), 764-775.  doi: 10.1016/j.ejor.2014.06.001.

[10]

C. H. Coombs and J. N. Bowen, A test of ve-theories of risk and the effect of the central limit theorem, Acta Psychologica, 35 (1971), 15-28.  doi: 10.1016/0001-6918(71)90028-X.

[11]

C. H. Coombs and L. C. Huang, Polynomial psychophysics of risk, Journal of Mathematical Psychology, 7 (1970), 317-338.  doi: 10.1016/0022-2496(70)90051-9.

[12]

A. H. CrespoI. R. del Bosque and M. G. de los Salmones Sanchez, The influence of perceived risk on internet shopping behavior: a multidimensional perspective, Journal of Risk Research, 12 (2009), 259-277.  doi: 10.1080/13669870802497744.

[13]

K. DanielD. Hirshleifer and A. Subrahmanyam, Investor psychology and security market under- and overreactions, the Journal of Finance, 53 (1998), 1839-1885.  doi: 10.1111/0022-1082.00077.

[14]

S. Das, Structured products & hybrid securities, J. Wiley, 2001.

[15]

J. S. Dyer and J. Jia, Relative risk-value models, European Journal of Operational Research, 103 (1997), 170-185.  doi: 10.1016/S0377-2217(96)00254-8.

[16]

M. S. Featherman and P. A. Pavlou, Predicting e-services adoption: a perceived risk facets perspective, International Journal of Human-Computer Studies, 59 (2003), 451-474.  doi: 10.1016/S1071-5819(03)00111-3.

[17]

M. GlaserT. Langer and M. Weber, True overconfidence in interval estimates: Evidence based on a new measure of miscalibration, Journal of Behavioral Decision Making, 26 (2013), 405-417.  doi: 10.2139/ssrn.712583.

[18]

M. Grinblatt and M. Keloharju, Sensation seeking, overconfidence, and trading activity, The Journal of Finance, 64 (2009), 549-578.  doi: 10.3386/w12223.

[19]

T. Hens and M. O. Rieger, Can utility optimization explain the demand for structured investment products?, Quantitative Finance, 14 (2014), 673-681.  doi: 10.1080/14697688.2013.823512.

[20]

D. Hirshleifer and G. Y. Luo, On the survival of overconfident traders in a competitive securities market, Journal of Financial Markets, 4 (2001), 73-84.  doi: 10.1016/S1386-4181(00)00014-8.

[21]

P.-H. HoC.-W. HuangC.-Y. Lin and J.-F. Yen, Ceo overconfidence and financial crisis: Evidence from bank lending and leverage, Journal of Financial Economics, 120 (2016), 194-209. 

[22]

J. Jia and J. S. Dyer, A standard measure of risk and risk-value models, Management Science, 42 (1996), 1691-1705. 

[23]

J. JiaJ. S. Dyer and J. C. Butler, Measures of perceived risk, Management Science, 45 (1999), 519-532.  doi: 10.1287/mnsc.45.4.519.

[24]

J. JiaJ. S. Dyer and J. C. Butler, Generalized disappointment models, Journal of Risk and Uncertainty, 22 (2001), 59-78. 

[25]

L. R. KellerR. K. Sarin and M. Weber, Empirical investigation of some properties of the perceived riskiness of gambles, Organizational Behavior and Human Decision Processes, 38 (1986), 114-130.  doi: 10.1016/0749-5978(86)90029-4.

[26]

C. LiaoH.-N. Lin and Y.-P. Liu, Predicting the use of pirated software: A contingency model integrating perceived risk with the theory of planned behavior, Journal of Business Ethics, 91 (2010), 237-252.  doi: 10.1007/s10551-009-0081-5.

[27]

R. D. Luce, Several possible measures of risk, Theory and Decision, 12 (1980), 217-228.  doi: 10.1007/BF00135033.

[28]

R. D. Luce, Correction to "several possible measures of risk", Theory and Decision, 13 (1981), 381-381.  doi: 10.1007/BF00126971.

[29]

R. D. Luce and E. U. Weber, An axiomatic theory of conjoint, expected risk, Journal of Mathematical Psychology, 30 (1986), 188-205.  doi: 10.1016/0022-2496(86)90013-1.

[30]

C. MartinsT. Oliveira and A. Popovi, Understanding the internet banking adoption: A unified theory of acceptance and use of technology and perceived risk application, International Journal of Information Management, 34 (2014), 1-13.  doi: 10.1016/j.ijinfomgt.2013.06.002.

[31]

T. Odean, Volume, volatility, price, and profit when all traders are above average, The Journal of Finance, 53 (1998), 1887-1934. 

[32]

M. Ofir and Z. Wiener, Investment in Financial Structured Products from a Rational Choice Perspective, Technical report, Hebrew University of Jerusalem, 2009.

[33]

A. M. Olazábal and H. Marmostein, Structured products for the retail market: The regulatory implications of investor innumeracy and consumer information processing, Ariz. L. Rev., 52-623 (2010), 623-673. 

[34]

C. ParkS. Ahn and S. Lee, A bayesian decision model based on expected utility and uncertainty risk, Applied Mathematics & Computation, 242 (2014), 643-648.  doi: 10.1016/j.amc.2014.06.005.

[35]

A. Pollatsek and A. Tversky, A theory of risk, Journal of Mathematical Psychology, 7 (1970), 540-553.  doi: 10.1016/0022-2496(70)90039-8.

[36]

M. O. Rieger and T. Hens, Explaining the demand for structured financial products: survey and field experiment evidence, Zeitschrift für Betriebswirtschaft, 82 (2012), 491-508. 

[37]

A. Tversky and D. Kahneman, Advances in prospect theory: Cumulative representation of uncertainty, Readings in Formal Epistemology, 1 (1992), 493-519.  doi: 10.1007/978-3-319-20451-2_24.

[38]

X. T. Wang and J. G. Johnson, A tri-reference point theory of decision making under risk, Journal of Experimental Psychology General, 141 (2012), 743-756.  doi: 10.1037/a0027415.

[39]

E. U. Weber, Combine and conquer: A joint application of conjoint and functional approaches to the problem of risk measurement, Journal of Experimental Psychology: Human Perception and Performance, 10 (1984), 179-194. 

[40]

E. U. Weber, Risk as an Independent Variable in Risky Choic, PhD thesis, Harvard University, 1984.

[41]

E. U. Weber and W. P. Bottom, An empirical evaluation of the transitivity, monotonicity, accounting, and conjoint axioms for perceived risk, Organizational Behavior and Human Decision Processes, 45 (1990), 253-275.  doi: 10.1016/0749-5978(90)90014-Z.

show all references

References:
[1]

B. N. Adebambo and X. S. Yan, Momentum, reversals, and fund manager overconfidence, Financial Management, 45 (2016), 609-639.  doi: 10.1111/fima.12128.

[2]

A. A. AlalwanY. K. DwivediN. P. Rana and M. D. Williams, Consumer adoption of mobile banking in jordan: Examining the role of usefulness, ease of use, perceived risk and self-efficacy, Journal of Enterprise Information Management, 29 (2016), 118-139.  doi: 10.1108/JEIM-04-2015-0035.

[3]

F. H. Barron, Polynomial psychophysics of risk for selected business faculty, Acta Psychologica, 40 (1976), 127-137.  doi: 10.1016/0001-6918(76)90004-4.

[4]

D. E. Bell, Disappointment in decision making under uncertainty, Operations Research, 33 (1985), 1-27.  doi: 10.1287/opre.33.1.1.

[5]

M. Bennet, Complexity and its discontents: recurring legal concerns with structured products, New York University Journal of Law & Business, 7 (2010), 811-843. 

[6]

K. Bregu, Overconfidence and (Over) Trading: The Effect of Feedback on Trading Behavior, Technical report, University of Arkansas, 2016.

[7]

J. C. ButlerJ. S. Dyer and J. Jia, An empirical investigation of the assumptions of risk-value models, Journal of Risk and Uncertainty, 30 (2005), 133-156.  doi: 10.1007/s11166-005-6562-8.

[8]

C. Celerier and B. Vallee, Catering to investors through security design: Headline rate and complexity, Quarterly Journal of Economics, 132 (2017), 1469-1508. 

[9]

A. Cillo and P. Delquié, Mean-risk analysis with enhanced behavioral content, European Journal of Operational Research, 239 (2014), 764-775.  doi: 10.1016/j.ejor.2014.06.001.

[10]

C. H. Coombs and J. N. Bowen, A test of ve-theories of risk and the effect of the central limit theorem, Acta Psychologica, 35 (1971), 15-28.  doi: 10.1016/0001-6918(71)90028-X.

[11]

C. H. Coombs and L. C. Huang, Polynomial psychophysics of risk, Journal of Mathematical Psychology, 7 (1970), 317-338.  doi: 10.1016/0022-2496(70)90051-9.

[12]

A. H. CrespoI. R. del Bosque and M. G. de los Salmones Sanchez, The influence of perceived risk on internet shopping behavior: a multidimensional perspective, Journal of Risk Research, 12 (2009), 259-277.  doi: 10.1080/13669870802497744.

[13]

K. DanielD. Hirshleifer and A. Subrahmanyam, Investor psychology and security market under- and overreactions, the Journal of Finance, 53 (1998), 1839-1885.  doi: 10.1111/0022-1082.00077.

[14]

S. Das, Structured products & hybrid securities, J. Wiley, 2001.

[15]

J. S. Dyer and J. Jia, Relative risk-value models, European Journal of Operational Research, 103 (1997), 170-185.  doi: 10.1016/S0377-2217(96)00254-8.

[16]

M. S. Featherman and P. A. Pavlou, Predicting e-services adoption: a perceived risk facets perspective, International Journal of Human-Computer Studies, 59 (2003), 451-474.  doi: 10.1016/S1071-5819(03)00111-3.

[17]

M. GlaserT. Langer and M. Weber, True overconfidence in interval estimates: Evidence based on a new measure of miscalibration, Journal of Behavioral Decision Making, 26 (2013), 405-417.  doi: 10.2139/ssrn.712583.

[18]

M. Grinblatt and M. Keloharju, Sensation seeking, overconfidence, and trading activity, The Journal of Finance, 64 (2009), 549-578.  doi: 10.3386/w12223.

[19]

T. Hens and M. O. Rieger, Can utility optimization explain the demand for structured investment products?, Quantitative Finance, 14 (2014), 673-681.  doi: 10.1080/14697688.2013.823512.

[20]

D. Hirshleifer and G. Y. Luo, On the survival of overconfident traders in a competitive securities market, Journal of Financial Markets, 4 (2001), 73-84.  doi: 10.1016/S1386-4181(00)00014-8.

[21]

P.-H. HoC.-W. HuangC.-Y. Lin and J.-F. Yen, Ceo overconfidence and financial crisis: Evidence from bank lending and leverage, Journal of Financial Economics, 120 (2016), 194-209. 

[22]

J. Jia and J. S. Dyer, A standard measure of risk and risk-value models, Management Science, 42 (1996), 1691-1705. 

[23]

J. JiaJ. S. Dyer and J. C. Butler, Measures of perceived risk, Management Science, 45 (1999), 519-532.  doi: 10.1287/mnsc.45.4.519.

[24]

J. JiaJ. S. Dyer and J. C. Butler, Generalized disappointment models, Journal of Risk and Uncertainty, 22 (2001), 59-78. 

[25]

L. R. KellerR. K. Sarin and M. Weber, Empirical investigation of some properties of the perceived riskiness of gambles, Organizational Behavior and Human Decision Processes, 38 (1986), 114-130.  doi: 10.1016/0749-5978(86)90029-4.

[26]

C. LiaoH.-N. Lin and Y.-P. Liu, Predicting the use of pirated software: A contingency model integrating perceived risk with the theory of planned behavior, Journal of Business Ethics, 91 (2010), 237-252.  doi: 10.1007/s10551-009-0081-5.

[27]

R. D. Luce, Several possible measures of risk, Theory and Decision, 12 (1980), 217-228.  doi: 10.1007/BF00135033.

[28]

R. D. Luce, Correction to "several possible measures of risk", Theory and Decision, 13 (1981), 381-381.  doi: 10.1007/BF00126971.

[29]

R. D. Luce and E. U. Weber, An axiomatic theory of conjoint, expected risk, Journal of Mathematical Psychology, 30 (1986), 188-205.  doi: 10.1016/0022-2496(86)90013-1.

[30]

C. MartinsT. Oliveira and A. Popovi, Understanding the internet banking adoption: A unified theory of acceptance and use of technology and perceived risk application, International Journal of Information Management, 34 (2014), 1-13.  doi: 10.1016/j.ijinfomgt.2013.06.002.

[31]

T. Odean, Volume, volatility, price, and profit when all traders are above average, The Journal of Finance, 53 (1998), 1887-1934. 

[32]

M. Ofir and Z. Wiener, Investment in Financial Structured Products from a Rational Choice Perspective, Technical report, Hebrew University of Jerusalem, 2009.

[33]

A. M. Olazábal and H. Marmostein, Structured products for the retail market: The regulatory implications of investor innumeracy and consumer information processing, Ariz. L. Rev., 52-623 (2010), 623-673. 

[34]

C. ParkS. Ahn and S. Lee, A bayesian decision model based on expected utility and uncertainty risk, Applied Mathematics & Computation, 242 (2014), 643-648.  doi: 10.1016/j.amc.2014.06.005.

[35]

A. Pollatsek and A. Tversky, A theory of risk, Journal of Mathematical Psychology, 7 (1970), 540-553.  doi: 10.1016/0022-2496(70)90039-8.

[36]

M. O. Rieger and T. Hens, Explaining the demand for structured financial products: survey and field experiment evidence, Zeitschrift für Betriebswirtschaft, 82 (2012), 491-508. 

[37]

A. Tversky and D. Kahneman, Advances in prospect theory: Cumulative representation of uncertainty, Readings in Formal Epistemology, 1 (1992), 493-519.  doi: 10.1007/978-3-319-20451-2_24.

[38]

X. T. Wang and J. G. Johnson, A tri-reference point theory of decision making under risk, Journal of Experimental Psychology General, 141 (2012), 743-756.  doi: 10.1037/a0027415.

[39]

E. U. Weber, Combine and conquer: A joint application of conjoint and functional approaches to the problem of risk measurement, Journal of Experimental Psychology: Human Perception and Performance, 10 (1984), 179-194. 

[40]

E. U. Weber, Risk as an Independent Variable in Risky Choic, PhD thesis, Harvard University, 1984.

[41]

E. U. Weber and W. P. Bottom, An empirical evaluation of the transitivity, monotonicity, accounting, and conjoint axioms for perceived risk, Organizational Behavior and Human Decision Processes, 45 (1990), 253-275.  doi: 10.1016/0749-5978(90)90014-Z.

Figure 1.  The lottery form of binary structured financial products
Figure 2.  Expected price distribution of overconfident investors when $\theta+\varepsilon>\mu$
Figure 3.  Expected price distribution of overconfident bullish investors of type Ⅰ
Figure 4.  Expected price distribution of overconfident bullish investors of type Ⅱ
Figure 5.  Expected price distribution of overconfident bullish investors of type Ⅲ
Figure 6.  Perceived risk of overconfident bullish investors of type Ⅰ
Figure 7.  Perceived risk of overconfident bullish investors of type Ⅱ or type Ⅲ(2)(4)
Figure 8.  Perceived risk of overconfident bullish investors of type Ⅲ(3)
[1]

Shou Chen, Chen Xiao. Financial risk contagion and optimal control. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022070

[2]

Francesca Biagini, Jacopo Mancin. Financial asset price bubbles under model uncertainty. Probability, Uncertainty and Quantitative Risk, 2017, 2 (0) : 14-. doi: 10.1186/s41546-017-0026-3

[3]

Qihong Chen. Recovery of local volatility for financial assets with mean-reverting price processes. Mathematical Control and Related Fields, 2018, 8 (3&4) : 625-635. doi: 10.3934/mcrf.2018026

[4]

Yinghui Dong, Guojing Wang. Ruin probability for renewal risk model with negative risk sums. Journal of Industrial and Management Optimization, 2006, 2 (2) : 229-236. doi: 10.3934/jimo.2006.2.229

[5]

Emilija Bernackaitė, Jonas Šiaulys. The finite-time ruin probability for an inhomogeneous renewal risk model. Journal of Industrial and Management Optimization, 2017, 13 (1) : 207-222. doi: 10.3934/jimo.2016012

[6]

. Publisher Correction to: Probability, uncertainty and quantitative risk, volume 4. Probability, Uncertainty and Quantitative Risk, 2019, 4 (0) : 7-. doi: 10.1186/s41546-019-0041-7

[7]

Yang Yang, Kaiyong Wang, Jiajun Liu, Zhimin Zhang. Asymptotics for a bidimensional risk model with two geometric Lévy price processes. Journal of Industrial and Management Optimization, 2019, 15 (2) : 481-505. doi: 10.3934/jimo.2018053

[8]

Min Li, Jiahua Zhang, Yifan Xu, Wei Wang. Effect of disruption risk on a supply chain with price-dependent demand. Journal of Industrial and Management Optimization, 2020, 16 (6) : 3083-3103. doi: 10.3934/jimo.2019095

[9]

Stefan Weber, Kerstin Weske. The joint impact of bankruptcy costs, fire sales and cross-holdings on systemic risk in financial networks. Probability, Uncertainty and Quantitative Risk, 2017, 2 (0) : 9-. doi: 10.1186/s41546-017-0020-9

[10]

Po-Chung Yang, Hui-Ming Wee, Shen-Lian Chung, Yong-Yan Huang. Pricing and replenishment strategy for a multi-market deteriorating product with time-varying and price-sensitive demand. Journal of Industrial and Management Optimization, 2013, 9 (4) : 769-787. doi: 10.3934/jimo.2013.9.769

[11]

Xing Huang, Michael Röckner, Feng-Yu Wang. Nonlinear Fokker–Planck equations for probability measures on path space and path-distribution dependent SDEs. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 3017-3035. doi: 10.3934/dcds.2019125

[12]

Qingwu Gao, Zhongquan Huang, Houcai Shen, Juan Zheng. Asymptotics for random-time ruin probability in a time-dependent renewal risk model with subexponential claims. Journal of Industrial and Management Optimization, 2016, 12 (1) : 31-43. doi: 10.3934/jimo.2016.12.31

[13]

Jan Lorenz, Stefano Battiston. Systemic risk in a network fragility model analyzed with probability density evolution of persistent random walks. Networks and Heterogeneous Media, 2008, 3 (2) : 185-200. doi: 10.3934/nhm.2008.3.185

[14]

Yuebao Wang, Qingwu Gao, Kaiyong Wang, Xijun Liu. Random time ruin probability for the renewal risk model with heavy-tailed claims. Journal of Industrial and Management Optimization, 2009, 5 (4) : 719-736. doi: 10.3934/jimo.2009.5.719

[15]

Baoyin Xun, Kam C. Yuen, Kaiyong Wang. The finite-time ruin probability of a risk model with a general counting process and stochastic return. Journal of Industrial and Management Optimization, 2022, 18 (3) : 1541-1556. doi: 10.3934/jimo.2021032

[16]

Nana Wan, Li Li, Xiaozhi Wu, Jianchang Fan. Risk minimization inventory model with a profit target and option contracts under spot price uncertainty. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021093

[17]

Ming-Jong Yao, James T. Lin, Chen-Hao Yang. An integrated approach for the operations of distribution and lateral transshipment for seasonal products - A case study in household product industry. Journal of Industrial and Management Optimization, 2011, 7 (2) : 401-424. doi: 10.3934/jimo.2011.7.401

[18]

Rongfei Liu, Dingcheng Wang, Jiangyan Peng. Infinite-time ruin probability of a renewal risk model with exponential Levy process investment and dependent claims and inter-arrival times. Journal of Industrial and Management Optimization, 2017, 13 (2) : 995-1007. doi: 10.3934/jimo.2016058

[19]

Eunju Hwang, Kyung Jae Kim, Bong Dae Choi. Delay distribution and loss probability of bandwidth requests under truncated binary exponential backoff mechanism in IEEE 802.16e over Gilbert-Elliot error channel. Journal of Industrial and Management Optimization, 2009, 5 (3) : 525-540. doi: 10.3934/jimo.2009.5.525

[20]

Alar Leibak. On the number of factorizations of $ t $ mod $ N $ and the probability distribution of Diffie-Hellman secret keys for many users. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021029

2020 Impact Factor: 1.801

Metrics

  • PDF downloads (410)
  • HTML views (1662)
  • Cited by (0)

Other articles
by authors

[Back to Top]