October  2019, 15(4): 1517-1534. doi: 10.3934/jimo.2018107

An interior point continuous path-following trajectory for linear programming

1. 

School of Science, Nanjing Audit University, Nanjing 211815, Jiangsu Province, China

2. 

Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China

* Corresponding author: Li-Zhi Liao

Received  January 2018 Revised  March 2018 Published  July 2018

Fund Project: The work of Liming Sun was supported in part by the National Natural Science Foundation of China (Grant No. 11701287) and the Natural Science Foundation of Jiangsu Province (Grant No. BK20171071). The work of Li-Zhi Liao was supported in part by grants from the General Research Fund (GRF) of Hong Kong and FRG of Hong Kong Baptist University

In this paper, an interior point continuous path-following trajectory is proposed for linear programming. The descent direction in our continuous trajectory can be viewed as some combination of the affine scaling direction and the centering direction for linear programming. A key component in our interior point continuous path-following trajectory is an ordinary differential equation (ODE) system. Various properties including the convergence in the limit for the solution of this ODE system are analyzed and discussed in detail. Several illustrative examples are also provided to demonstrate the numerical behavior of this continuous trajectory.

Citation: Liming Sun, Li-Zhi Liao. An interior point continuous path-following trajectory for linear programming. Journal of Industrial & Management Optimization, 2019, 15 (4) : 1517-1534. doi: 10.3934/jimo.2018107
References:
[1]

P.-A. AbsilR. Mahony and B. Andrews, Convergence of the iterates of descent methods for analytic cost functions, SIAM J. Optim., 16 (2005), 531-547.  doi: 10.1137/040605266.  Google Scholar

[2]

I. AdlerN. KarmarkarM. G. C. Resend and G. Veiga, An implementation of Karmarkar's algorithm for linear programming, Math. Program., 44 (1989), 297-335.  doi: 10.1007/BF01587095.  Google Scholar

[3]

N. Andrei, Gradient Flow Algorithm for Unconstrained Optimization, ICI Technical Report, April, 2004. Google Scholar

[4]

E. R. Barnes, A variation on Karmarkar's algorithm for solving linear programming problems, Math. Program., 36 (1986), 174-182.  doi: 10.1007/BF02592024.  Google Scholar

[5]

D. A. Bayer and J. C. Lagarias, The nonlinear geometry of linear programming. I Affine and projective scaling trajectories, Trans. Amer. Math. Soc., 314 (1989), 499-526.  doi: 10.2307/2001396.  Google Scholar

[6]

D. A. Bayer and J. C. Lagarias, The nonlinear geometry of linear programming. Ⅱ Legendre transform coordinates and central trajectories, Trans. Amer. Math. Soc., 314 (1989), 527-581.  doi: 10.2307/2001397.  Google Scholar

[7]

C. A. Botsaris, Differential gradient methods, J. Math. Anal. Appl., 63 (1978), 177-198.  doi: 10.1016/0022-247X(78)90114-2.  Google Scholar

[8]

F. H. Branin, A widely convergent method for finding multiple solutions of simultaneous nonlinear equations, IBM J. Res. Devel., 16 (1972), 504-522.  doi: 10.1147/rd.165.0504.  Google Scholar

[9]

F. H. Branin and S. K. Hoo, A method for finding multiple extrema of a function of N variables, Numerical Methods for Non-Linear Optimization (Conf., Univ. Dundee, Dundee, 1971), Academic Press, London, (1972), 231-237.  Google Scholar

[10]

A. A. Brown and M. C. Bartholomew-Biggs, Some effective methods for unconstrained optimization based on the solution of systems of ordinary differential equations, J. Optim. Theory Appl., 62 (1989), 211-224.  doi: 10.1007/BF00941054.  Google Scholar

[11]

R. Courant, Variational methods for the solution of problems of equilibrium and vibration, Bull. Amer. Math. Soc., 49 (1943), 1-23.  doi: 10.1090/S0002-9904-1943-07818-4.  Google Scholar

[12]

J. E. Dennis, Jr. and R. B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations, SIAM, 1996. doi: 10.1137/1.9781611971200.  Google Scholar

[13]

I. Diener, On the global convergence of path-following methods to determine all solutions to a system of nonlinear equations, Math. Program., 39 (1987), 181-188.  doi: 10.1007/BF02592951.  Google Scholar

[14]

I. Diener, Trajectory nets connecting all critical points of a smooth function, Math. Program., 36 (1986), 340-352.  doi: 10.1007/BF02592065.  Google Scholar

[15]

I. I. Dikin, Iterative solution of problems of linear and qudartic programming, Doklady Akademiia Nauk SSSR, 174 (1967), 747-748.   Google Scholar

[16]

R. M. Freund, Polynomial-time algorithms for linear programming based only on primal scaling and projected gradients of a potential function, Math. Program., 51 (1991), 203-222.  doi: 10.1007/BF01586933.  Google Scholar

[17]

P. E. GillW. MurrayM. A. SaundersJ. A. Tomlin and M. H. Wright, On projected Newton barrier methods for linear programming and an equivalence to Karmarkar's projective method, Math. Program., 36 (1986), 183-209.  doi: 10.1007/BF02592025.  Google Scholar

[18]

C. C. Gonzaga, Polynomial affine algorithms for linear programming, Math. Program., 49 (1990/91), 7-21.  doi: 10.1007/BF01588776.  Google Scholar

[19]

C. C. Gonzaga, Large step path-following methods for linear programming. Ⅱ. Potential reduction method, SIAM J. Optim., 1 (1991), 280-292.  doi: 10.1137/0801019.  Google Scholar

[20]

C. C. Gonzaga, Path-following methods for linear programming, SIAM Rev., 34 (1992), 167-224.  doi: 10.1137/1034048.  Google Scholar

[21]

N. Karmarkar, A new polynomial-time algorithm for linear programming, Combinatorica, 4 (1984), 373-395.  doi: 10.1007/BF02579150.  Google Scholar

[22]

L.-Z. LiaoH. D. Qi and L. Q. Qi, Neurodynamical optimization, J. Global Optim, 28 (2004), 175-195.  doi: 10.1023/B:JOGO.0000015310.27011.02.  Google Scholar

[23]

L.-Z. Liao, A study of the dual affine scaling continuous trajectories for linear programming, J. Optim. Theory and Appl., 163 (2014), 548-568.  doi: 10.1007/s10957-013-0495-1.  Google Scholar

[24]

N. Megiddo and M. Shub, Boundary behavior of interior point algorihms for linear programming, Math. Oper. Res., 14 (1989), 97-146.  doi: 10.1287/moor.14.1.97.  Google Scholar

[25]

C. L. Monma and J. Morton, Computational experience with a dual affine variant of Karmarkar's method for linear programming, Oper. Res. Lett., 6 (1987), 261-267.  doi: 10.1016/0167-6377(87)90040-X.  Google Scholar

[26]

R. D. C. Monteiro and I. Adler, Interior path following primal-dual algorithms. I. Linear programming, Math. Program., 44 (1989), 27-41.  doi: 10.1007/BF01587075.  Google Scholar

[27]

R. D. C. MonteiroI. Adler and M. G. C. Resende, A polynomial-time primal-dual affine scaling algorithm for linear and convex quadratic programming and its power series extension, Math. Oper. Res., 15 (1990), 191-214.  doi: 10.1287/moor.15.2.191.  Google Scholar

[28]

R. D. C. Monteiro and I. Adler, Limiting behavior of the affine scaling continuous trajectories for linear programming problems, Math. Program., 50 (1991), 29-51.  doi: 10.1007/BF01594923.  Google Scholar

[29]

R. D. C. Monteiro, On the continuous trajectories for a potential reduction algorithm for linear programming, Math. Oper. Res., 17 (1992), 225-253.  doi: 10.1287/moor.17.1.225.  Google Scholar

[30]

X. Qian and L.-Z. Liao, Analysis of the primal affine scaling continuous trajectory for convex programming, Pacific J. Optimi., (to appear). Google Scholar

[31]

C. Roos, New trajectory-following polynomial-time algorithm for linear programming problems, J. Optim. Theory Appl., 63 (1989), 433-458.  doi: 10.1007/BF00939806.  Google Scholar

[32]

C. Roos and J.-Ph. Vial, A polynomial method of approximate centers for linear programming, Math. Program., 54 (1992), 295-305.  doi: 10.1007/BF01586056.  Google Scholar

[33]

J. J. E. Slotine and W. Li, Applied Nonlinear Control, Prentice Hall, New Jersey, 1991. Google Scholar

[34]

G. W. Stewart, On scaled projections and pseudoinverses, Linear Alg. Appl., 112 (1989), 189-193.  doi: 10.1016/0024-3795(89)90594-6.  Google Scholar

[35]

J. Sun, A convergence proof for an affine scaling algorithm for convex quadratic programming without nondegeneracy assumptions, Math. Program., 60 (1993), 69-79.  doi: 10.1007/BF01580601.  Google Scholar

[36]

J. Sun, A convergence analysis for a convex version of Dikin's algorithm, Annals Oper. Res., 62 (1996), 357-374.  doi: 10.1007/BF02206823.  Google Scholar

[37]

M. J. Todd, A Dantzig-Wolfe-like variant of Karmarkar's interior-point linear programming algorithm, Oper. Res., 38 (1990), 1006-1018.  doi: 10.1287/opre.38.6.1006.  Google Scholar

[38]

P. Tseng and Z.-Q. Luo, On the convergence of the affine-scaling algorithm, Math. Program., 56 (1992), 301-319.  doi: 10.1007/BF01580904.  Google Scholar

[39]

T. Tsuchiya, Affine scaling algorithm, Interior Point Methods of Mathematical Programming, Kluwer Academic Pub., Netherlands, 5 (1996), 35-82. doi: 10.1007/978-1-4613-3449-1_2.  Google Scholar

[40]

R. J. VanderbeiM. S. Meketon and B. A. Freedman, A modification of Karmarkar's linear programming algorithm, Algorithmica, 1 (1986), 395-407.  doi: 10.1007/BF01840454.  Google Scholar

[41]

C. Witzgall, P. T. Boggs and P. D. Domich, On the convergence behavior of trajectories for linear programming, Mathematical Developments Arising from Linear Programming (Brunswick, ME, 1988), 161-187, Contemp. Math., 114, Amer. Math. Soc., Providence, RI, 1990. doi: 10.1090/conm/114/1097873.  Google Scholar

show all references

References:
[1]

P.-A. AbsilR. Mahony and B. Andrews, Convergence of the iterates of descent methods for analytic cost functions, SIAM J. Optim., 16 (2005), 531-547.  doi: 10.1137/040605266.  Google Scholar

[2]

I. AdlerN. KarmarkarM. G. C. Resend and G. Veiga, An implementation of Karmarkar's algorithm for linear programming, Math. Program., 44 (1989), 297-335.  doi: 10.1007/BF01587095.  Google Scholar

[3]

N. Andrei, Gradient Flow Algorithm for Unconstrained Optimization, ICI Technical Report, April, 2004. Google Scholar

[4]

E. R. Barnes, A variation on Karmarkar's algorithm for solving linear programming problems, Math. Program., 36 (1986), 174-182.  doi: 10.1007/BF02592024.  Google Scholar

[5]

D. A. Bayer and J. C. Lagarias, The nonlinear geometry of linear programming. I Affine and projective scaling trajectories, Trans. Amer. Math. Soc., 314 (1989), 499-526.  doi: 10.2307/2001396.  Google Scholar

[6]

D. A. Bayer and J. C. Lagarias, The nonlinear geometry of linear programming. Ⅱ Legendre transform coordinates and central trajectories, Trans. Amer. Math. Soc., 314 (1989), 527-581.  doi: 10.2307/2001397.  Google Scholar

[7]

C. A. Botsaris, Differential gradient methods, J. Math. Anal. Appl., 63 (1978), 177-198.  doi: 10.1016/0022-247X(78)90114-2.  Google Scholar

[8]

F. H. Branin, A widely convergent method for finding multiple solutions of simultaneous nonlinear equations, IBM J. Res. Devel., 16 (1972), 504-522.  doi: 10.1147/rd.165.0504.  Google Scholar

[9]

F. H. Branin and S. K. Hoo, A method for finding multiple extrema of a function of N variables, Numerical Methods for Non-Linear Optimization (Conf., Univ. Dundee, Dundee, 1971), Academic Press, London, (1972), 231-237.  Google Scholar

[10]

A. A. Brown and M. C. Bartholomew-Biggs, Some effective methods for unconstrained optimization based on the solution of systems of ordinary differential equations, J. Optim. Theory Appl., 62 (1989), 211-224.  doi: 10.1007/BF00941054.  Google Scholar

[11]

R. Courant, Variational methods for the solution of problems of equilibrium and vibration, Bull. Amer. Math. Soc., 49 (1943), 1-23.  doi: 10.1090/S0002-9904-1943-07818-4.  Google Scholar

[12]

J. E. Dennis, Jr. and R. B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations, SIAM, 1996. doi: 10.1137/1.9781611971200.  Google Scholar

[13]

I. Diener, On the global convergence of path-following methods to determine all solutions to a system of nonlinear equations, Math. Program., 39 (1987), 181-188.  doi: 10.1007/BF02592951.  Google Scholar

[14]

I. Diener, Trajectory nets connecting all critical points of a smooth function, Math. Program., 36 (1986), 340-352.  doi: 10.1007/BF02592065.  Google Scholar

[15]

I. I. Dikin, Iterative solution of problems of linear and qudartic programming, Doklady Akademiia Nauk SSSR, 174 (1967), 747-748.   Google Scholar

[16]

R. M. Freund, Polynomial-time algorithms for linear programming based only on primal scaling and projected gradients of a potential function, Math. Program., 51 (1991), 203-222.  doi: 10.1007/BF01586933.  Google Scholar

[17]

P. E. GillW. MurrayM. A. SaundersJ. A. Tomlin and M. H. Wright, On projected Newton barrier methods for linear programming and an equivalence to Karmarkar's projective method, Math. Program., 36 (1986), 183-209.  doi: 10.1007/BF02592025.  Google Scholar

[18]

C. C. Gonzaga, Polynomial affine algorithms for linear programming, Math. Program., 49 (1990/91), 7-21.  doi: 10.1007/BF01588776.  Google Scholar

[19]

C. C. Gonzaga, Large step path-following methods for linear programming. Ⅱ. Potential reduction method, SIAM J. Optim., 1 (1991), 280-292.  doi: 10.1137/0801019.  Google Scholar

[20]

C. C. Gonzaga, Path-following methods for linear programming, SIAM Rev., 34 (1992), 167-224.  doi: 10.1137/1034048.  Google Scholar

[21]

N. Karmarkar, A new polynomial-time algorithm for linear programming, Combinatorica, 4 (1984), 373-395.  doi: 10.1007/BF02579150.  Google Scholar

[22]

L.-Z. LiaoH. D. Qi and L. Q. Qi, Neurodynamical optimization, J. Global Optim, 28 (2004), 175-195.  doi: 10.1023/B:JOGO.0000015310.27011.02.  Google Scholar

[23]

L.-Z. Liao, A study of the dual affine scaling continuous trajectories for linear programming, J. Optim. Theory and Appl., 163 (2014), 548-568.  doi: 10.1007/s10957-013-0495-1.  Google Scholar

[24]

N. Megiddo and M. Shub, Boundary behavior of interior point algorihms for linear programming, Math. Oper. Res., 14 (1989), 97-146.  doi: 10.1287/moor.14.1.97.  Google Scholar

[25]

C. L. Monma and J. Morton, Computational experience with a dual affine variant of Karmarkar's method for linear programming, Oper. Res. Lett., 6 (1987), 261-267.  doi: 10.1016/0167-6377(87)90040-X.  Google Scholar

[26]

R. D. C. Monteiro and I. Adler, Interior path following primal-dual algorithms. I. Linear programming, Math. Program., 44 (1989), 27-41.  doi: 10.1007/BF01587075.  Google Scholar

[27]

R. D. C. MonteiroI. Adler and M. G. C. Resende, A polynomial-time primal-dual affine scaling algorithm for linear and convex quadratic programming and its power series extension, Math. Oper. Res., 15 (1990), 191-214.  doi: 10.1287/moor.15.2.191.  Google Scholar

[28]

R. D. C. Monteiro and I. Adler, Limiting behavior of the affine scaling continuous trajectories for linear programming problems, Math. Program., 50 (1991), 29-51.  doi: 10.1007/BF01594923.  Google Scholar

[29]

R. D. C. Monteiro, On the continuous trajectories for a potential reduction algorithm for linear programming, Math. Oper. Res., 17 (1992), 225-253.  doi: 10.1287/moor.17.1.225.  Google Scholar

[30]

X. Qian and L.-Z. Liao, Analysis of the primal affine scaling continuous trajectory for convex programming, Pacific J. Optimi., (to appear). Google Scholar

[31]

C. Roos, New trajectory-following polynomial-time algorithm for linear programming problems, J. Optim. Theory Appl., 63 (1989), 433-458.  doi: 10.1007/BF00939806.  Google Scholar

[32]

C. Roos and J.-Ph. Vial, A polynomial method of approximate centers for linear programming, Math. Program., 54 (1992), 295-305.  doi: 10.1007/BF01586056.  Google Scholar

[33]

J. J. E. Slotine and W. Li, Applied Nonlinear Control, Prentice Hall, New Jersey, 1991. Google Scholar

[34]

G. W. Stewart, On scaled projections and pseudoinverses, Linear Alg. Appl., 112 (1989), 189-193.  doi: 10.1016/0024-3795(89)90594-6.  Google Scholar

[35]

J. Sun, A convergence proof for an affine scaling algorithm for convex quadratic programming without nondegeneracy assumptions, Math. Program., 60 (1993), 69-79.  doi: 10.1007/BF01580601.  Google Scholar

[36]

J. Sun, A convergence analysis for a convex version of Dikin's algorithm, Annals Oper. Res., 62 (1996), 357-374.  doi: 10.1007/BF02206823.  Google Scholar

[37]

M. J. Todd, A Dantzig-Wolfe-like variant of Karmarkar's interior-point linear programming algorithm, Oper. Res., 38 (1990), 1006-1018.  doi: 10.1287/opre.38.6.1006.  Google Scholar

[38]

P. Tseng and Z.-Q. Luo, On the convergence of the affine-scaling algorithm, Math. Program., 56 (1992), 301-319.  doi: 10.1007/BF01580904.  Google Scholar

[39]

T. Tsuchiya, Affine scaling algorithm, Interior Point Methods of Mathematical Programming, Kluwer Academic Pub., Netherlands, 5 (1996), 35-82. doi: 10.1007/978-1-4613-3449-1_2.  Google Scholar

[40]

R. J. VanderbeiM. S. Meketon and B. A. Freedman, A modification of Karmarkar's linear programming algorithm, Algorithmica, 1 (1986), 395-407.  doi: 10.1007/BF01840454.  Google Scholar

[41]

C. Witzgall, P. T. Boggs and P. D. Domich, On the convergence behavior of trajectories for linear programming, Mathematical Developments Arising from Linear Programming (Brunswick, ME, 1988), 161-187, Contemp. Math., 114, Amer. Math. Soc., Providence, RI, 1990. doi: 10.1090/conm/114/1097873.  Google Scholar

Figure 1.  Transient behaviors of the continuous path of $x(t)$ and the objective function $c^Tx$ in Example 4.1 with starting point $x_0$
Figure 2.  Transient behaviors of the continuous path of $x(t)$ and the objective function $c^Tx$ in Example 4.1 with starting point $x_0^{'}$
Figure 3.  Transient behaviors of the continuous path of $x(t)$ and the objective function $c^Tx$ in Example 4.2 with starting point $x_0$
Figure 4.  Transient behaviors of the continuous path of $x(t)$ and the objective function $c^Tx$ in Example 4.2 with starting point $x_0^{'}$
[1]

Behrouz Kheirfam. A weighted-path-following method for symmetric cone linear complementarity problems. Numerical Algebra, Control & Optimization, 2014, 4 (2) : 141-150. doi: 10.3934/naco.2014.4.141

[2]

Yanqun Liu. An exterior point linear programming method based on inclusive normal cones. Journal of Industrial & Management Optimization, 2010, 6 (4) : 825-846. doi: 10.3934/jimo.2010.6.825

[3]

Yanqin Bai, Pengfei Ma, Jing Zhang. A polynomial-time interior-point method for circular cone programming based on kernel functions. Journal of Industrial & Management Optimization, 2016, 12 (2) : 739-756. doi: 10.3934/jimo.2016.12.739

[4]

Yibing Lv, Tiesong Hu, Jianlin Jiang. Penalty method-based equilibrium point approach for solving the linear bilevel multiobjective programming problem. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020102

[5]

Andrew E.B. Lim, John B. Moore. A path following algorithm for infinite quadratic programming on a Hilbert space. Discrete & Continuous Dynamical Systems - A, 1998, 4 (4) : 653-670. doi: 10.3934/dcds.1998.4.653

[6]

Behrouz Kheirfam, Guoqiang Wang. An infeasible full NT-step interior point method for circular optimization. Numerical Algebra, Control & Optimization, 2017, 7 (2) : 171-184. doi: 10.3934/naco.2017011

[7]

Yanqun Liu, Ming-Fang Ding. A ladder method for linear semi-infinite programming. Journal of Industrial & Management Optimization, 2014, 10 (2) : 397-412. doi: 10.3934/jimo.2014.10.397

[8]

Yi Xu, Wenyu Sun. A filter successive linear programming method for nonlinear semidefinite programming problems. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 193-206. doi: 10.3934/naco.2012.2.193

[9]

Soodabeh Asadi, Hossein Mansouri. A Mehrotra type predictor-corrector interior-point algorithm for linear programming. Numerical Algebra, Control & Optimization, 2019, 9 (2) : 147-156. doi: 10.3934/naco.2019011

[10]

Yue Zheng, Zhongping Wan, Shihui Jia, Guangmin Wang. A new method for strong-weak linear bilevel programming problem. Journal of Industrial & Management Optimization, 2015, 11 (2) : 529-547. doi: 10.3934/jimo.2015.11.529

[11]

Boshi Tian, Xiaoqi Yang, Kaiwen Meng. An interior-point $l_{\frac{1}{2}}$-penalty method for inequality constrained nonlinear optimization. Journal of Industrial & Management Optimization, 2016, 12 (3) : 949-973. doi: 10.3934/jimo.2016.12.949

[12]

Yu-Hong Dai, Xin-Wei Liu, Jie Sun. A primal-dual interior-point method capable of rapidly detecting infeasibility for nonlinear programs. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-27. doi: 10.3934/jimo.2018190

[13]

Dale McDonald. Sensitivity based trajectory following control damping methods. Numerical Algebra, Control & Optimization, 2013, 3 (1) : 127-143. doi: 10.3934/naco.2013.3.127

[14]

Fang Zeng, Pablo Suarez, Jiguang Sun. A decomposition method for an interior inverse scattering problem. Inverse Problems & Imaging, 2013, 7 (1) : 291-303. doi: 10.3934/ipi.2013.7.291

[15]

Yongjian Yang, Zhiyou Wu, Fusheng Bai. A filled function method for constrained nonlinear integer programming. Journal of Industrial & Management Optimization, 2008, 4 (2) : 353-362. doi: 10.3934/jimo.2008.4.353

[16]

Rongjie Lai, Jiang Liang, Hong-Kai Zhao. A local mesh method for solving PDEs on point clouds. Inverse Problems & Imaging, 2013, 7 (3) : 737-755. doi: 10.3934/ipi.2013.7.737

[17]

Zhongyi Huang. Tailored finite point method for the interface problem. Networks & Heterogeneous Media, 2009, 4 (1) : 91-106. doi: 10.3934/nhm.2009.4.91

[18]

Igor Griva, Roman A. Polyak. Proximal point nonlinear rescaling method for convex optimization. Numerical Algebra, Control & Optimization, 2011, 1 (2) : 283-299. doi: 10.3934/naco.2011.1.283

[19]

Huan Gao, Zhibao Li, Haibin Zhang. A fast continuous method for the extreme eigenvalue problem. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1587-1599. doi: 10.3934/jimo.2017008

[20]

Siqi Li, Weiyi Qian. Analysis of complexity of primal-dual interior-point algorithms based on a new kernel function for linear optimization. Numerical Algebra, Control & Optimization, 2015, 5 (1) : 37-46. doi: 10.3934/naco.2015.5.37

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (244)
  • HTML views (1020)
  • Cited by (0)

Other articles
by authors

[Back to Top]