• Previous Article
    Equilibrium and optimal balking strategies for low-priority customers in the M/G/1 queue with two classes of customers and preemptive priority
  • JIMO Home
  • This Issue
  • Next Article
    Fair-fixture: Minimizing carry-over effects in football leagues
October  2019, 15(4): 1579-1597. doi: 10.3934/jimo.2018112

Optimal pricing of perishable products with replenishment policy in the presence of strategic consumers

1. 

School of Business, Central South University, Changsha 410083, China

2. 

Institute of Big Data and Internet Innovation, Hunan University of Commerce, Changsha 410205, China

3. 

School of Business, Central South University, Changsha 410083, China

* Corresponding author: Xiaohong Chen

Received  September 2016 Revised  May 2018 Published  August 2018

Recognizing that strategic consumers have become increasingly common in the perishable products market, we develop a two-stage pricing model for a monopolistic firm with two classes of inventory strategies: non-replenishment and replenishment. First, the retailer mapping out his pricing policy, and then consumers determining their buying behavior given the retailers policy. Our results indicate that the game equilibrium exists between retailers and consumers in both cases. For a given realized price and inventory policy, the consumer's space is split into several areas by the optimal threshold functions. Inventory replenishment decisions are affected by market demand and a decline factor of consumers reservation value. The retailers profit loss is not necessarily related to the consumers waiting behavior but results from the ignorance of this behavior when pricing.

Citation: Guodong Yi, Xiaohong Chen, Chunqiao Tan. Optimal pricing of perishable products with replenishment policy in the presence of strategic consumers. Journal of Industrial & Management Optimization, 2019, 15 (4) : 1579-1597. doi: 10.3934/jimo.2018112
References:
[1]

F. J. ArcelusN. H. Shah and G. Srinivasan, Retailer's pricing, credit and inventory policies for deteriorating items in response to temporary price/credit incentives, International Journal of Production Economics, 81 (2003), 153-162.  doi: 10.1016/S0925-5273(02)00269-4.  Google Scholar

[2]

Y. Aviv and A. Pazgal, Optimal pricing of seasonal products in the presence of forward-looking consumers, Manufacturing and Service Operations Management, 10 (2008), 339-359.  doi: 10.1287/msom.1070.0183.  Google Scholar

[3]

D. E. Bell and D. Starr, Filene's basement, HBS Case Collection, 594-018(1993). Google Scholar

[4]

D. Besanko and W. L. Winston, Optimal price skimming by a monopolist facing rational consumers, Management Science, 36 (1990), 555-567.  doi: 10.1287/mnsc.36.5.555.  Google Scholar

[5]

G. R. Bitran and S. V. Mondschein, Periodic pricing of seasonal products in retailing, Management Science, 43 (1997), 64-79.  doi: 10.1287/mnsc.43.1.64.  Google Scholar

[6]

J. I. Bulow, Durable-goods monopolists, Journal of Political Economy, 90 (1982), 314-332.  doi: 10.1086/261058.  Google Scholar

[7]

G. P. Cachon and R. Swinney, Purchasing, pricing, and quick response in the presence of strategic consumers, Management Science, 55 (2008), 497-511.  doi: 10.1287/mnsc.1080.0948.  Google Scholar

[8]

G. P. Cachon and R. Swinney, The value of fast fashion: Quick response, enhanced design, and strategic consumer behavior, Management Science, 57 (2011), 778-795.  doi: 10.1287/mnsc.1100.1303.  Google Scholar

[9]

C. T. ChangM. C. Cheng and L. Y. Ouyang, Optimal pricing and ordering policies for non-instantaneously deteriorating items under order-size-dependent delay in payments, Applied Mathematical Modelling, 39 (2015), 747-763.  doi: 10.1016/j.apm.2014.07.002.  Google Scholar

[10]

R. H. Coase, Durability and monopoly, Journal of Law and Economics, 15 (1972), 143-149.  doi: 10.1086/466731.  Google Scholar

[11]

S. Dasuab, Dynamic pricing when consumers are strategic: Analysis of posted and contingent pricing schemes, European Journal of Operational Research, 204 (2010), 662-671.   Google Scholar

[12]

J. DuJ. Zhang and G. Hua, Pricing and inventory management in the presence of strategic customers with risk preference and decreasing value, International Journal of Production Economics, 164 (2015), 160-166.  doi: 10.1016/j.ijpe.2015.02.013.  Google Scholar

[13]

C. Y. Dye, Joint pricing and ordering policy for a deteriorating inventory with partial backlogging, Omega, 35 (2007), 184-189.  doi: 10.1016/j.omega.2005.05.002.  Google Scholar

[14]

W. ElmaghrabyA. Gülcü and P. Keskinocak, Designing optimal preannounced markdowns in the presence of rational customers with multiunit demands, Manufacturing and Service Operations Management, 10 (2007), 126-148.  doi: 10.1287/msom.1070.0157.  Google Scholar

[15]

G. GallegoR. Phillips and O. ahin, Strategic management of distressed inventory, Production and Operations Management, 17 (2008), 402-415.   Google Scholar

[16]

M. GhoreishiA. MirzazadehG. W. Weber and I. Nakhai-Kamalabadi, Joint pricing and replenishment decisions for non-instantaneous deteriorating items with partial backlogging, inflation- and selling price-dependent demand and customer returns, Journal of Industrial and Management Optimization, 11 (2015), 933-949.  doi: 10.3934/jimo.2015.11.933.  Google Scholar

[17]

P. HuS. Shum and M. Yu, Joint inventory and markdown management for perishable goods with strategic consumer behavior, Operations Research, 64 (2016), 118-134.  doi: 10.1287/opre.2015.1439.  Google Scholar

[18]

H. Hwang and S. W. Shinn, Retailer's pricing and lot sizing policy for exponentially deteriorating products under the condition of permissible delay in payments, Computers and Operations Research, 24 (1997), 539-547.  doi: 10.1016/S0305-0548(96)00069-X.  Google Scholar

[19]

M. Landsberger and I. Meilijson, Intertemporal price discrimination and sales strategy under incomplete information, Rand Journal of Economics, 16 (1985), 424-430.   Google Scholar

[20]

Y. LevinJ. Mcgill and M. Nediak, Dynamic pricing in the presence of strategic consumers and oligopolistic competition, Management Science, 55 (2008), 32-46.  doi: 10.1287/mnsc.1080.0936.  Google Scholar

[21]

Y. LevinJ. Mcgill and M. Nediak, Optimal dynamic pricing of perishable items by a monopolist facing strategic consumers, Production and Operations Management, 19 (2010), 40-60.  doi: 10.1111/j.1937-5956.2009.01046.x.  Google Scholar

[22]

C. LiangM. Cakanyildirim and S. P. Sethi, Analysis of product rollover strategies in the presence of strategic customers, Management Science, 60 (2014), 1033-1056.   Google Scholar

[23]

Q. Liu and D. Zhang, Dynamic pricing competition with strategic customers under vertical product differentiation, Management Science, 59 (2013), 84-101.  doi: 10.1287/mnsc.1120.1564.  Google Scholar

[24]

R. Maihami and B. Karimi, Optimizing the pricing and replenishment policy for non-instantaneous deteriorating items with stochastic demand and promotional efforts, Computers and Operations Research, 51 (2014), 302-312.  doi: 10.1016/j.cor.2014.05.022.  Google Scholar

[25]

R. Maihami and I. N. Kamalabadi, Joint pricing and inventory control for non-instantaneous deteriorating items with partial backlogging and time and price dependent demand, International Journal of Production Economics, 136 (2012), 116-122.  doi: 10.1016/j.ijpe.2011.09.020.  Google Scholar

[26]

G. Mcwilliams, Analyzing customers, best buy decides not all are welcome, Wall Street Journal Online, 2004. Google Scholar

[27]

A. J. Mersereau and D. Zhang, Markdown pricing with unknown fraction of strategic customers, Manufacturing and Service Operations Management, 14 (2012), 355-370.  doi: 10.1287/msom.1120.0376.  Google Scholar

[28]

N. L. Stokey, Rational expectations and durable goods pricing, Bell Journal of Economics, 12 (2000), 112-128.  doi: 10.2307/3003511.  Google Scholar

[29]

N. L. Stokey, Intertemporal price discrimination, Quarterly Journal of Economics, 93 (1979), 355-371.  doi: 10.2307/1883163.  Google Scholar

[30]

X. Su, Intertemporal pricing with strategic customer behavior, Management Science, 53 (2007), 726-741.  doi: 10.1287/mnsc.1060.0667.  Google Scholar

[31]

X. Su and F. Zhang, On the value of commitment and availability guarantees when selling to strategic consumers, Management Science, 55 (2009), 713-726.   Google Scholar

[32]

A. A. Taleizadeh and M. Noori-Daryan, Joint optimization of price, replenishment frequency, replenishment cycle and production rate in vendor managed inventory system with deteriorating items, International Journal of Production Economics, 159 (2015), 285-295.  doi: 10.1016/j.ijpe.2014.09.009.  Google Scholar

[33]

H. M. Wee and S. T. Law, Replenishment and pricing policy for deteriorating items taking into account the time-value of money, International Journal of Production Economics, 71 (2001), 213-220.  doi: 10.1016/S0925-5273(00)00121-3.  Google Scholar

[34]

P. C. Yang, Pricing strategy for deteriorating items using quantity discount when demand is price sensitive, European Journal of Operational Research, 157 (2004), 389-397.  doi: 10.1016/S0377-2217(03)00241-8.  Google Scholar

[35]

P. C. YangH. M. WeeS. L. Chung and Y. Y. Huang, Pricing and replenishment strategy for a multi-market deteriorating product with time-varying and price-sensitive demand, Journal of Industrial and Management Optimization, 9 (2013), 769-787.  doi: 10.3934/jimo.2013.9.769.  Google Scholar

[36]

D. YangE. Qi and Y. Li, Quick response and supply chain structure with strategic consumers, Omega, 52 (2015), 1-14.  doi: 10.1016/j.omega.2014.10.006.  Google Scholar

[37]

R. Yin and C. S. Tang, The implications of customer purchasing behavior and in-store display formats, Decisions Operations and Technology Management. Google Scholar

[38]

R. YinY. AvivA. Pazgal and C. S. Tang, Optimal markdown pricing: Implications of inventory display formats in the presence of strategic customers, Management Science, 55 (2009), 1391-1408.  doi: 10.1287/mnsc.1090.1029.  Google Scholar

[39]

J. ZhangZ. Bai and W. Tang, Optimal pricing policy for deteriorating items with preservation technology investment, Journal of Industrial and Management Optimization, 10 (2014), 1261-1277.  doi: 10.3934/jimo.2014.10.1261.  Google Scholar

show all references

References:
[1]

F. J. ArcelusN. H. Shah and G. Srinivasan, Retailer's pricing, credit and inventory policies for deteriorating items in response to temporary price/credit incentives, International Journal of Production Economics, 81 (2003), 153-162.  doi: 10.1016/S0925-5273(02)00269-4.  Google Scholar

[2]

Y. Aviv and A. Pazgal, Optimal pricing of seasonal products in the presence of forward-looking consumers, Manufacturing and Service Operations Management, 10 (2008), 339-359.  doi: 10.1287/msom.1070.0183.  Google Scholar

[3]

D. E. Bell and D. Starr, Filene's basement, HBS Case Collection, 594-018(1993). Google Scholar

[4]

D. Besanko and W. L. Winston, Optimal price skimming by a monopolist facing rational consumers, Management Science, 36 (1990), 555-567.  doi: 10.1287/mnsc.36.5.555.  Google Scholar

[5]

G. R. Bitran and S. V. Mondschein, Periodic pricing of seasonal products in retailing, Management Science, 43 (1997), 64-79.  doi: 10.1287/mnsc.43.1.64.  Google Scholar

[6]

J. I. Bulow, Durable-goods monopolists, Journal of Political Economy, 90 (1982), 314-332.  doi: 10.1086/261058.  Google Scholar

[7]

G. P. Cachon and R. Swinney, Purchasing, pricing, and quick response in the presence of strategic consumers, Management Science, 55 (2008), 497-511.  doi: 10.1287/mnsc.1080.0948.  Google Scholar

[8]

G. P. Cachon and R. Swinney, The value of fast fashion: Quick response, enhanced design, and strategic consumer behavior, Management Science, 57 (2011), 778-795.  doi: 10.1287/mnsc.1100.1303.  Google Scholar

[9]

C. T. ChangM. C. Cheng and L. Y. Ouyang, Optimal pricing and ordering policies for non-instantaneously deteriorating items under order-size-dependent delay in payments, Applied Mathematical Modelling, 39 (2015), 747-763.  doi: 10.1016/j.apm.2014.07.002.  Google Scholar

[10]

R. H. Coase, Durability and monopoly, Journal of Law and Economics, 15 (1972), 143-149.  doi: 10.1086/466731.  Google Scholar

[11]

S. Dasuab, Dynamic pricing when consumers are strategic: Analysis of posted and contingent pricing schemes, European Journal of Operational Research, 204 (2010), 662-671.   Google Scholar

[12]

J. DuJ. Zhang and G. Hua, Pricing and inventory management in the presence of strategic customers with risk preference and decreasing value, International Journal of Production Economics, 164 (2015), 160-166.  doi: 10.1016/j.ijpe.2015.02.013.  Google Scholar

[13]

C. Y. Dye, Joint pricing and ordering policy for a deteriorating inventory with partial backlogging, Omega, 35 (2007), 184-189.  doi: 10.1016/j.omega.2005.05.002.  Google Scholar

[14]

W. ElmaghrabyA. Gülcü and P. Keskinocak, Designing optimal preannounced markdowns in the presence of rational customers with multiunit demands, Manufacturing and Service Operations Management, 10 (2007), 126-148.  doi: 10.1287/msom.1070.0157.  Google Scholar

[15]

G. GallegoR. Phillips and O. ahin, Strategic management of distressed inventory, Production and Operations Management, 17 (2008), 402-415.   Google Scholar

[16]

M. GhoreishiA. MirzazadehG. W. Weber and I. Nakhai-Kamalabadi, Joint pricing and replenishment decisions for non-instantaneous deteriorating items with partial backlogging, inflation- and selling price-dependent demand and customer returns, Journal of Industrial and Management Optimization, 11 (2015), 933-949.  doi: 10.3934/jimo.2015.11.933.  Google Scholar

[17]

P. HuS. Shum and M. Yu, Joint inventory and markdown management for perishable goods with strategic consumer behavior, Operations Research, 64 (2016), 118-134.  doi: 10.1287/opre.2015.1439.  Google Scholar

[18]

H. Hwang and S. W. Shinn, Retailer's pricing and lot sizing policy for exponentially deteriorating products under the condition of permissible delay in payments, Computers and Operations Research, 24 (1997), 539-547.  doi: 10.1016/S0305-0548(96)00069-X.  Google Scholar

[19]

M. Landsberger and I. Meilijson, Intertemporal price discrimination and sales strategy under incomplete information, Rand Journal of Economics, 16 (1985), 424-430.   Google Scholar

[20]

Y. LevinJ. Mcgill and M. Nediak, Dynamic pricing in the presence of strategic consumers and oligopolistic competition, Management Science, 55 (2008), 32-46.  doi: 10.1287/mnsc.1080.0936.  Google Scholar

[21]

Y. LevinJ. Mcgill and M. Nediak, Optimal dynamic pricing of perishable items by a monopolist facing strategic consumers, Production and Operations Management, 19 (2010), 40-60.  doi: 10.1111/j.1937-5956.2009.01046.x.  Google Scholar

[22]

C. LiangM. Cakanyildirim and S. P. Sethi, Analysis of product rollover strategies in the presence of strategic customers, Management Science, 60 (2014), 1033-1056.   Google Scholar

[23]

Q. Liu and D. Zhang, Dynamic pricing competition with strategic customers under vertical product differentiation, Management Science, 59 (2013), 84-101.  doi: 10.1287/mnsc.1120.1564.  Google Scholar

[24]

R. Maihami and B. Karimi, Optimizing the pricing and replenishment policy for non-instantaneous deteriorating items with stochastic demand and promotional efforts, Computers and Operations Research, 51 (2014), 302-312.  doi: 10.1016/j.cor.2014.05.022.  Google Scholar

[25]

R. Maihami and I. N. Kamalabadi, Joint pricing and inventory control for non-instantaneous deteriorating items with partial backlogging and time and price dependent demand, International Journal of Production Economics, 136 (2012), 116-122.  doi: 10.1016/j.ijpe.2011.09.020.  Google Scholar

[26]

G. Mcwilliams, Analyzing customers, best buy decides not all are welcome, Wall Street Journal Online, 2004. Google Scholar

[27]

A. J. Mersereau and D. Zhang, Markdown pricing with unknown fraction of strategic customers, Manufacturing and Service Operations Management, 14 (2012), 355-370.  doi: 10.1287/msom.1120.0376.  Google Scholar

[28]

N. L. Stokey, Rational expectations and durable goods pricing, Bell Journal of Economics, 12 (2000), 112-128.  doi: 10.2307/3003511.  Google Scholar

[29]

N. L. Stokey, Intertemporal price discrimination, Quarterly Journal of Economics, 93 (1979), 355-371.  doi: 10.2307/1883163.  Google Scholar

[30]

X. Su, Intertemporal pricing with strategic customer behavior, Management Science, 53 (2007), 726-741.  doi: 10.1287/mnsc.1060.0667.  Google Scholar

[31]

X. Su and F. Zhang, On the value of commitment and availability guarantees when selling to strategic consumers, Management Science, 55 (2009), 713-726.   Google Scholar

[32]

A. A. Taleizadeh and M. Noori-Daryan, Joint optimization of price, replenishment frequency, replenishment cycle and production rate in vendor managed inventory system with deteriorating items, International Journal of Production Economics, 159 (2015), 285-295.  doi: 10.1016/j.ijpe.2014.09.009.  Google Scholar

[33]

H. M. Wee and S. T. Law, Replenishment and pricing policy for deteriorating items taking into account the time-value of money, International Journal of Production Economics, 71 (2001), 213-220.  doi: 10.1016/S0925-5273(00)00121-3.  Google Scholar

[34]

P. C. Yang, Pricing strategy for deteriorating items using quantity discount when demand is price sensitive, European Journal of Operational Research, 157 (2004), 389-397.  doi: 10.1016/S0377-2217(03)00241-8.  Google Scholar

[35]

P. C. YangH. M. WeeS. L. Chung and Y. Y. Huang, Pricing and replenishment strategy for a multi-market deteriorating product with time-varying and price-sensitive demand, Journal of Industrial and Management Optimization, 9 (2013), 769-787.  doi: 10.3934/jimo.2013.9.769.  Google Scholar

[36]

D. YangE. Qi and Y. Li, Quick response and supply chain structure with strategic consumers, Omega, 52 (2015), 1-14.  doi: 10.1016/j.omega.2014.10.006.  Google Scholar

[37]

R. Yin and C. S. Tang, The implications of customer purchasing behavior and in-store display formats, Decisions Operations and Technology Management. Google Scholar

[38]

R. YinY. AvivA. Pazgal and C. S. Tang, Optimal markdown pricing: Implications of inventory display formats in the presence of strategic customers, Management Science, 55 (2009), 1391-1408.  doi: 10.1287/mnsc.1090.1029.  Google Scholar

[39]

J. ZhangZ. Bai and W. Tang, Optimal pricing policy for deteriorating items with preservation technology investment, Journal of Industrial and Management Optimization, 10 (2014), 1261-1277.  doi: 10.3934/jimo.2014.10.1261.  Google Scholar

Figure 1.  Customer types for the case without inventory replenishment1
Figure 2.  Customer types for the case with inventory replenishment2
Figure 3.  Impact of Pricing Strategies on Consumer Waiting Behavior
Figure 4.  Variation of the Profits of a Seller with an Initial Stock
Figure 5.  Impact of Q and $\lambda$ on the Profits of Sellers
Figure 6.  Profits of a Seller with $\alpha$ Change
Table 1.  Pricing Strategy and Retailer Expected Profits Under Both Scenarios3
Q $[p_1, p_2]$Expected profitsDistribution of expected profits
0[0.419, 0.392]0.909(45.4%, 9.8%, 44.8%)
1[0.548, 0.362]0.790(1.1%, 42.8%, 37.5%, 13.4%, 5.1%)
Q $[p_1, p_2]$Expected profitsDistribution of expected profits
0[0.419, 0.392]0.909(45.4%, 9.8%, 44.8%)
1[0.548, 0.362]0.790(1.1%, 42.8%, 37.5%, 13.4%, 5.1%)
Table 2.  Optimal Pricing and Expected Profit When Customers Are Non-strategic4
Q $[p_1, p_2]$Expected profitsDistribution of expected profits
0[0.454 0.357]0.933(56.2%, 43.8%)
1[0.487 0.312]0.862(49.8%, 38.7%, 11.5%)
Q $[p_1, p_2]$Expected profitsDistribution of expected profits
0[0.454 0.357]0.933(56.2%, 43.8%)
1[0.487 0.312]0.862(49.8%, 38.7%, 11.5%)
Table 3.  Influence of Consumer Waiting Behavior on Seller Profit6
Case Ⅰ (%)Case Ⅱ(%)
Q$\alpha=0.5$$\alpha=1$$\alpha=1.5$$\alpha=0.5$$\alpha=1$$\alpha=1.5$
0-2.61-10.04-38.74-4.95-11.7-33.31
1-9.21-16.73-40.92-4.64-20.52-71.89
57.0822.3252.68-12.30-17.79-43.36
Case Ⅰ (%)Case Ⅱ(%)
Q$\alpha=0.5$$\alpha=1$$\alpha=1.5$$\alpha=0.5$$\alpha=1$$\alpha=1.5$
0-2.61-10.04-38.74-4.95-11.7-33.31
1-9.21-16.73-40.92-4.64-20.52-71.89
57.0822.3252.68-12.30-17.79-43.36
[1]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[2]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[3]

Puneet Pasricha, Anubha Goel. Pricing power exchange options with hawkes jump diffusion processes. Journal of Industrial & Management Optimization, 2021, 17 (1) : 133-149. doi: 10.3934/jimo.2019103

[4]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020051

[5]

José Madrid, João P. G. Ramos. On optimal autocorrelation inequalities on the real line. Communications on Pure & Applied Analysis, 2021, 20 (1) : 369-388. doi: 10.3934/cpaa.2020271

[6]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[7]

Sergio Conti, Georg Dolzmann. Optimal laminates in single-slip elastoplasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 1-16. doi: 10.3934/dcdss.2020302

[8]

Haili Yuan, Yijun Hu. Optimal investment for an insurer under liquid reserves. Journal of Industrial & Management Optimization, 2021, 17 (1) : 339-355. doi: 10.3934/jimo.2019114

[9]

Tommi Brander, Joonas Ilmavirta, Petteri Piiroinen, Teemu Tyni. Optimal recovery of a radiating source with multiple frequencies along one line. Inverse Problems & Imaging, 2020, 14 (6) : 967-983. doi: 10.3934/ipi.2020044

[10]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[11]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[12]

Veena Goswami, Gopinath Panda. Optimal customer behavior in observable and unobservable discrete-time queues. Journal of Industrial & Management Optimization, 2021, 17 (1) : 299-316. doi: 10.3934/jimo.2019112

[13]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[14]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[15]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[16]

Tien-Yu Lin, Bhaba R. Sarker, Chien-Jui Lin. An optimal setup cost reduction and lot size for economic production quantity model with imperfect quality and quantity discounts. Journal of Industrial & Management Optimization, 2021, 17 (1) : 467-484. doi: 10.3934/jimo.2020043

[17]

Shuai Huang, Zhi-Ping Fan, Xiaohuan Wang. Optimal financing and operational decisions of capital-constrained manufacturer under green credit and subsidy. Journal of Industrial & Management Optimization, 2021, 17 (1) : 261-277. doi: 10.3934/jimo.2019110

[18]

Yen-Luan Chen, Chin-Chih Chang, Zhe George Zhang, Xiaofeng Chen. Optimal preventive "maintenance-first or -last" policies with generalized imperfect maintenance models. Journal of Industrial & Management Optimization, 2021, 17 (1) : 501-516. doi: 10.3934/jimo.2020149

[19]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[20]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (325)
  • HTML views (1400)
  • Cited by (1)

Other articles
by authors

[Back to Top]