• Previous Article
    Online ordering strategy for the discrete newsvendor problem with order value-based free-shipping
  • JIMO Home
  • This Issue
  • Next Article
    Optimal pricing of perishable products with replenishment policy in the presence of strategic consumers
October  2019, 15(4): 1599-1615. doi: 10.3934/jimo.2018113

Equilibrium and optimal balking strategies for low-priority customers in the M/G/1 queue with two classes of customers and preemptive priority

1. 

School of Economics and Management, Beihang University, Beijing 100191, China

2. 

College of Science, Yanshan University, Hebei, Qinhuangdao 066004, China

3. 

School of Economics and Management, Beihang University, Beijing 100191, China

4. 

Institute of Economics and Business, Beihang University, Beijing 100191, China

* Corresponding author: Xiuli Xu

Received  October 2016 Revised  June 2018 Published  August 2018

This paper investigates the low-priority customers' strategic behavior in the single-server queueing system with general service time and two customer types. The priority system is preemptive resume, which means that if a high-priority customer enters the system that are serving a low-priority customer, the arriving customer preempts the service facility and the preempted customer returns to the head of the queue for his own class. The customer who is preempted resumes service at the point of interruption upon reentering the system. The low-priority customer's dilemma is whether to join or balk based on a linear reward-cost structure. Two cases are distinguished based on the different levels of information that the low-priority customers acquire before joining the system. The equilibrium threshold strategy in the observable case and the equilibrium balking strategy as well as the socially optimal balking strategy in the unobservable case for the low-priority customers are derived finally.

Citation: Biao Xu, Xiuli Xu, Zhong Yao. Equilibrium and optimal balking strategies for low-priority customers in the M/G/1 queue with two classes of customers and preemptive priority. Journal of Industrial & Management Optimization, 2019, 15 (4) : 1599-1615. doi: 10.3934/jimo.2018113
References:
[1]

E. Altaman and R. Hassin, Non-threshold equilibrium for customers joining an M/G/1 queue, International Symposium on Dynamic Games & Applications, 2002 (2002), 56-64.   Google Scholar

[2]

J. AltmannH. DaanenH. Oliver and A. S.-B. Suarez, How to market-manage a QoS network, Proceedings - IEEE INFOCOM 1, 2002 (2002), 56-64.  doi: 10.1109/INFCOM.2002.1019270.  Google Scholar

[3]

H. BergM. Mandjes and R. Nunez-Queija, Pricing and distributed QoS control for elastic network traffic, Operations Research Letters, 35 (2007), 297-307.  doi: 10.1016/j.orl.2006.03.018.  Google Scholar

[4]

O. Boudali and A. Economou, Optimal and equilibrium balking strategies in the single server Markovian queue with catastrophes, European Journal of Operational Research, 218 (2012), 708-715.  doi: 10.1016/j.ejor.2011.11.043.  Google Scholar

[5]

G. Brouns and J. Wal, Optimal threshold policies in a two-class preemptive priority queue with admission and termination control, Queueing System, 54 (2006), 21-33.  doi: 10.1007/s11134-006-8307-z.  Google Scholar

[6]

F. Chen and V. Kulkarni, Individual, class-based, and social optimal admission policies in two-priority queues, Stochastic Models, 23 (2007), 97-127.  doi: 10.1080/15326340601142180.  Google Scholar

[7]

P. Chen and Y. Zhou, Equilibrium balking strategies in the single server queue with setup times and breakdowns, Operational Research: An International Journal, 15 (2015), 213-231.  doi: 10.1007/s12351-015-0174-0.  Google Scholar

[8]

A. EconomouA. Gómez-Corral and S. Kanta, Optimal balking strategies in single-server queues with general service and vacation times, Performance Evaluation, 68 (2011), 967-982.  doi: 10.1016/j.peva.2011.07.001.  Google Scholar

[9]

N. Edelson and D. Hildebrand, Congestion tolls for Poisson queueing processes, Econometrica, 43 (1975), 81-92.  doi: 10.2307/1913415.  Google Scholar

[10]

J. Erlichman and R. Hassin, Equilibrium solutions in the observable M/M/1 queue with overtaking, International ICST Conference on Performance Evaluation Methodologies & Tools, (1975). doi: 10.4108/ICST.VALUETOOLS2009.8039.  Google Scholar

[11]

S. Gavirneni and V. Kulkarni, Self-selecting priority queues with burr distributed waiting costs, Production & Operations Management, 25 (2016), 979-992.   Google Scholar

[12]

W. Gilland and D. Warsing, The impact of revenue-maximizing priority pricing on customer delay costs, Decision Sciences, 40 (2009), 89-120.   Google Scholar

[13]

R. Hassin, Rational Queueing, CRC press, Boca Raton, 2016. doi: 10.1201/b20014.  Google Scholar

[14]

M. Haviv and Y. Kerner, On balking from an empty queue, Queueing Systems Theory & Applications, 55 (2007), 239-249.  doi: 10.1007/s11134-007-9020-2.  Google Scholar

[15]

V. HsuS. Xu and B. Jukic, Optimal scheduling and incentive compatible pricing for a service system with quality of service guarantees, Manufacturing & Service Operations Management, 11 (2008), 375-396.  doi: 10.1287/msom.1080.0226.  Google Scholar

[16]

Y. Kerner, Equilibrium joining probabilities for an M/G/1 queue, Games & Economic Behavior, 71 (2011), 521-526.  doi: 10.1016/j.geb.2010.06.002.  Google Scholar

[17]

Y. Kim and M. Mannino, Optimal incentive-compatible pricing for M/G/1 queues, Operations Research Letters, 31 (2003), 459-461.  doi: 10.1016/S0167-6377(03)00060-9.  Google Scholar

[18]

D. Lee and S. Park, Performance analysis of queueing strategies for multiple priority calls inmultiservice personal communications services, Computer Communications, 23 (2000), 1069-1083.   Google Scholar

[19]

L. LiJ. Wang and F. Zhang, Equilibrium customer strategies in Markovian queues with partial breakdowns, Computers & Industrial Engineering, 66 (2013), 751-757.  doi: 10.1016/j.cie.2013.09.023.  Google Scholar

[20]

C. Liu and R. Berry, A priority queue model for competition with shared spectrum, Communication, Control & Computing, 2014 (2014), 629-636.  doi: 10.1109/ALLERTON.2014.7028514.  Google Scholar

[21]

M. Mandjes, Pricing strategies under heterogeneous service requirements, Computer Networks, 42 (2003), 231-249.   Google Scholar

[22]

P. Naor, The regulation of queue size by levying tolls, Econometrica, 37 (1969), 15-24.  doi: 10.2307/1909200.  Google Scholar

[23]

A. Printezis and A. Burnetas, Priority option pricing in an M/M/m queue, Operations Research Letters, 36 (2008), 700-704.  doi: 10.1016/j.orl.2008.07.001.  Google Scholar

[24]

S. Ross, Introduction to Probability Models, Academic Press, Boston, 1989.  Google Scholar

[25]

W. SunP. Guo and N. Tian, Relative priority policies for minimizing the cost of queueing systems with service discrimination, Applied Mathematical Modelling, 33 (2009), 4241-4258.  doi: 10.1016/j.apm.2009.03.012.  Google Scholar

[26]

W. Sun, Sy. Li and C.-G. E., Equilibrium and optimal balking strategies of customers in Markovian queues with multiple vacations and N-policy, Applied Mathematical Modelling, 40 (2016), 284–301. doi: 10.1016/j.apm.2015.04.045.  Google Scholar

[27]

H. Takagi, Unified and refined analysis of the response time and waiting time in the M/M/m FCFS preemptive-resume priority queue, Journal of Industrial and Management Optimization, 13 (2017), 1945-1973.  doi: 10.3934/jimo.2017026.  Google Scholar

[28]

R. TianD. Yue and W. Yue, Optimal balking strategies in an M/G/1 queueing system with a removable server under N-policy, Journal of Industrial and Management Optimization, 11 (2015), 715-731.  doi: 10.3934/jimo.2015.11.715.  Google Scholar

[29]

B. Xu and X. Xu, Equilibrium strategic behavior of customers in the M/M/1 queue with partial failures and repairs, Operational Research: An International Journal, 18 (2018), 273-292.  doi: 10.1007/s12351-016-0264-7.  Google Scholar

[30]

B. XuX. Xu and X. Wang, Optimal balking strategies for high-priority customers in M/G/1 queues with 2 classes of customers, Journal of Applied Mathematics and Computing, 51 (2016), 623-642.  doi: 10.1007/s12190-015-0923-5.  Google Scholar

[31]

F. ZhangJ. Wang and B. Liu, Equilibrium balking strategies in markovian queues with working vacations, Applied Mathematical Modelling, 37 (2013), 8264-8282.  doi: 10.1016/j.apm.2013.03.049.  Google Scholar

[32]

F. ZhangJ. Wang and B. Liu, Equilibrium joining probabilities in observable queues with general service and setup times, Journal of Industrial and Management Optimization, 9 (2013), 901-917.  doi: 10.3934/jimo.2013.9.901.  Google Scholar

show all references

References:
[1]

E. Altaman and R. Hassin, Non-threshold equilibrium for customers joining an M/G/1 queue, International Symposium on Dynamic Games & Applications, 2002 (2002), 56-64.   Google Scholar

[2]

J. AltmannH. DaanenH. Oliver and A. S.-B. Suarez, How to market-manage a QoS network, Proceedings - IEEE INFOCOM 1, 2002 (2002), 56-64.  doi: 10.1109/INFCOM.2002.1019270.  Google Scholar

[3]

H. BergM. Mandjes and R. Nunez-Queija, Pricing and distributed QoS control for elastic network traffic, Operations Research Letters, 35 (2007), 297-307.  doi: 10.1016/j.orl.2006.03.018.  Google Scholar

[4]

O. Boudali and A. Economou, Optimal and equilibrium balking strategies in the single server Markovian queue with catastrophes, European Journal of Operational Research, 218 (2012), 708-715.  doi: 10.1016/j.ejor.2011.11.043.  Google Scholar

[5]

G. Brouns and J. Wal, Optimal threshold policies in a two-class preemptive priority queue with admission and termination control, Queueing System, 54 (2006), 21-33.  doi: 10.1007/s11134-006-8307-z.  Google Scholar

[6]

F. Chen and V. Kulkarni, Individual, class-based, and social optimal admission policies in two-priority queues, Stochastic Models, 23 (2007), 97-127.  doi: 10.1080/15326340601142180.  Google Scholar

[7]

P. Chen and Y. Zhou, Equilibrium balking strategies in the single server queue with setup times and breakdowns, Operational Research: An International Journal, 15 (2015), 213-231.  doi: 10.1007/s12351-015-0174-0.  Google Scholar

[8]

A. EconomouA. Gómez-Corral and S. Kanta, Optimal balking strategies in single-server queues with general service and vacation times, Performance Evaluation, 68 (2011), 967-982.  doi: 10.1016/j.peva.2011.07.001.  Google Scholar

[9]

N. Edelson and D. Hildebrand, Congestion tolls for Poisson queueing processes, Econometrica, 43 (1975), 81-92.  doi: 10.2307/1913415.  Google Scholar

[10]

J. Erlichman and R. Hassin, Equilibrium solutions in the observable M/M/1 queue with overtaking, International ICST Conference on Performance Evaluation Methodologies & Tools, (1975). doi: 10.4108/ICST.VALUETOOLS2009.8039.  Google Scholar

[11]

S. Gavirneni and V. Kulkarni, Self-selecting priority queues with burr distributed waiting costs, Production & Operations Management, 25 (2016), 979-992.   Google Scholar

[12]

W. Gilland and D. Warsing, The impact of revenue-maximizing priority pricing on customer delay costs, Decision Sciences, 40 (2009), 89-120.   Google Scholar

[13]

R. Hassin, Rational Queueing, CRC press, Boca Raton, 2016. doi: 10.1201/b20014.  Google Scholar

[14]

M. Haviv and Y. Kerner, On balking from an empty queue, Queueing Systems Theory & Applications, 55 (2007), 239-249.  doi: 10.1007/s11134-007-9020-2.  Google Scholar

[15]

V. HsuS. Xu and B. Jukic, Optimal scheduling and incentive compatible pricing for a service system with quality of service guarantees, Manufacturing & Service Operations Management, 11 (2008), 375-396.  doi: 10.1287/msom.1080.0226.  Google Scholar

[16]

Y. Kerner, Equilibrium joining probabilities for an M/G/1 queue, Games & Economic Behavior, 71 (2011), 521-526.  doi: 10.1016/j.geb.2010.06.002.  Google Scholar

[17]

Y. Kim and M. Mannino, Optimal incentive-compatible pricing for M/G/1 queues, Operations Research Letters, 31 (2003), 459-461.  doi: 10.1016/S0167-6377(03)00060-9.  Google Scholar

[18]

D. Lee and S. Park, Performance analysis of queueing strategies for multiple priority calls inmultiservice personal communications services, Computer Communications, 23 (2000), 1069-1083.   Google Scholar

[19]

L. LiJ. Wang and F. Zhang, Equilibrium customer strategies in Markovian queues with partial breakdowns, Computers & Industrial Engineering, 66 (2013), 751-757.  doi: 10.1016/j.cie.2013.09.023.  Google Scholar

[20]

C. Liu and R. Berry, A priority queue model for competition with shared spectrum, Communication, Control & Computing, 2014 (2014), 629-636.  doi: 10.1109/ALLERTON.2014.7028514.  Google Scholar

[21]

M. Mandjes, Pricing strategies under heterogeneous service requirements, Computer Networks, 42 (2003), 231-249.   Google Scholar

[22]

P. Naor, The regulation of queue size by levying tolls, Econometrica, 37 (1969), 15-24.  doi: 10.2307/1909200.  Google Scholar

[23]

A. Printezis and A. Burnetas, Priority option pricing in an M/M/m queue, Operations Research Letters, 36 (2008), 700-704.  doi: 10.1016/j.orl.2008.07.001.  Google Scholar

[24]

S. Ross, Introduction to Probability Models, Academic Press, Boston, 1989.  Google Scholar

[25]

W. SunP. Guo and N. Tian, Relative priority policies for minimizing the cost of queueing systems with service discrimination, Applied Mathematical Modelling, 33 (2009), 4241-4258.  doi: 10.1016/j.apm.2009.03.012.  Google Scholar

[26]

W. Sun, Sy. Li and C.-G. E., Equilibrium and optimal balking strategies of customers in Markovian queues with multiple vacations and N-policy, Applied Mathematical Modelling, 40 (2016), 284–301. doi: 10.1016/j.apm.2015.04.045.  Google Scholar

[27]

H. Takagi, Unified and refined analysis of the response time and waiting time in the M/M/m FCFS preemptive-resume priority queue, Journal of Industrial and Management Optimization, 13 (2017), 1945-1973.  doi: 10.3934/jimo.2017026.  Google Scholar

[28]

R. TianD. Yue and W. Yue, Optimal balking strategies in an M/G/1 queueing system with a removable server under N-policy, Journal of Industrial and Management Optimization, 11 (2015), 715-731.  doi: 10.3934/jimo.2015.11.715.  Google Scholar

[29]

B. Xu and X. Xu, Equilibrium strategic behavior of customers in the M/M/1 queue with partial failures and repairs, Operational Research: An International Journal, 18 (2018), 273-292.  doi: 10.1007/s12351-016-0264-7.  Google Scholar

[30]

B. XuX. Xu and X. Wang, Optimal balking strategies for high-priority customers in M/G/1 queues with 2 classes of customers, Journal of Applied Mathematics and Computing, 51 (2016), 623-642.  doi: 10.1007/s12190-015-0923-5.  Google Scholar

[31]

F. ZhangJ. Wang and B. Liu, Equilibrium balking strategies in markovian queues with working vacations, Applied Mathematical Modelling, 37 (2013), 8264-8282.  doi: 10.1016/j.apm.2013.03.049.  Google Scholar

[32]

F. ZhangJ. Wang and B. Liu, Equilibrium joining probabilities in observable queues with general service and setup times, Journal of Industrial and Management Optimization, 9 (2013), 901-917.  doi: 10.3934/jimo.2013.9.901.  Google Scholar

Figure 1.  The service process of an arbitrary arriving class-1 customer
Figure 2.  The service process of an arbitrary arriving class-2 customer
Figure 3.  The equilibrium thresholds of the class-1 customers vs.$K_1$ for ${\lambda _2} = 0.5, E\left[ {{G_1}} \right] = E\left[ {{G_2}} \right] = 1, {C_1} = 8$
Figure 4.  The equilibrium thresholds of the class-1 customers vs.$C_1$ for ${\lambda _2} = 0.5, E\left[ {{G_1}} \right] = E\left[ {{G_2}} \right] = 1, {K_1} = 100$
Figure 5.  The equilibrium thresholds of the class-1 customers vs.$E\left[ {{G_1}} \right]$ for ${\lambda _2} = 0.5, E\left[ {{G_2}} \right] = 1, {K_1} = 100, {C_1} = 5$
Figure 6.  The expected net social benefit vs.$q$ for ${\lambda _1} = {\lambda _2} = 0.5, E\left[ {{G_1}} \right] = E\left[ {{G_2}} \right] = 1, E\left[ {{G_1^2}} \right] = E\left[ {{G_2^2}} \right] = 1.2, {C_1} = 10, {K_2} = 100, {C_2} = 50$
Figure 7.  The expected net social benefit vs.$q$ for ${\lambda _1} = {\lambda _2} = 0.5, E\left[ {{G_1}} \right] = E\left[ {{G_2}} \right] = 1, E\left[ {{G_1^2}} \right] = E\left[ {{G_2^2}} \right] = 1.2, {K_1} = 10, {K_2} = 100, {C_2} = 50$
Figure 8.  Equilibrium and socially optimal joining probabilities of the class-1 customers vs. ${K_1}$ for ${\lambda _1} = {\lambda _2} = 0.5, E\left[ {{G_1}} \right] = E\left[ {{G_2}} \right] = 1, E\left[ {{G_1^2}} \right] = E\left[ {{G_2^2}} \right] = 1.2, {C_1} = 10$
Figure 9.  Equilibrium and socially optimal joining probabilities of the class-1 customers vs. ${C_1}$ for ${\lambda _1} = {\lambda _2} = 0.5, E\left[ {{G_1}} \right] = E\left[ {{G_2}} \right] = 1, E\left[ {{G_1^2}} \right] = E\left[ {{G_2^2}} \right] = 1.2, {K_1} = 50$
Figure 10.  Equilibrium and socially optimal joining probabilities of the class-1 customers vs. ${\lambda _1}$ for ${\lambda _2} = 0.2, E\left[ {{G_1}} \right] = E\left[ {{G_2}} \right] = 1, E\left[ {{G_1^2}} \right] = E\left[ {{G_2^2}} \right] = 1.2, {K_1} = 15, {C_1} = 10$
[1]

Chandra Shekhar, Amit Kumar, Shreekant Varshney, Sherif Ibrahim Ammar. $ \bf{M/G/1} $ fault-tolerant machining system with imperfection. Journal of Industrial & Management Optimization, 2021, 17 (1) : 1-28. doi: 10.3934/jimo.2019096

[2]

Sujit Kumar Samanta, Rakesh Nandi. Analysis of $GI^{[X]}/D$-$MSP/1/\infty$ queue using $RG$-factorization. Journal of Industrial & Management Optimization, 2021, 17 (2) : 549-573. doi: 10.3934/jimo.2019123

[3]

Gaojun Luo, Xiwang Cao. Two classes of near-optimal codebooks with respect to the Welch bound. Advances in Mathematics of Communications, 2021, 15 (2) : 279-289. doi: 10.3934/amc.2020066

[4]

Fengwei Li, Qin Yue, Xiaoming Sun. The values of two classes of Gaussian periods in index 2 case and weight distributions of linear codes. Advances in Mathematics of Communications, 2021, 15 (1) : 131-153. doi: 10.3934/amc.2020049

[5]

Manuel Friedrich, Martin Kružík, Ulisse Stefanelli. Equilibrium of immersed hyperelastic solids. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021003

[6]

Jian Zhang, Tony T. Lee, Tong Ye, Liang Huang. An approximate mean queue length formula for queueing systems with varying service rate. Journal of Industrial & Management Optimization, 2021, 17 (1) : 185-204. doi: 10.3934/jimo.2019106

[7]

Editorial Office. Retraction: Wei Gao and Juan L. G. Guirao, Preface. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : ⅰ-ⅰ. doi: 10.3934/dcdss.201904i

[8]

Yu Zhou, Xinfeng Dong, Yongzhuang Wei, Fengrong Zhang. A note on the Signal-to-noise ratio of $ (n, m) $-functions. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020117

[9]

Hongwei Liu, Jingge Liu. On $ \sigma $-self-orthogonal constacyclic codes over $ \mathbb F_{p^m}+u\mathbb F_{p^m} $. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020127

[10]

Boris Andreianov, Mohamed Maliki. On classes of well-posedness for quasilinear diffusion equations in the whole space. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 505-531. doi: 10.3934/dcdss.2020361

[11]

Shanding Xu, Longjiang Qu, Xiwang Cao. Three classes of partitioned difference families and their optimal constant composition codes. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020120

[12]

Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133

[13]

Kien Trung Nguyen, Vo Nguyen Minh Hieu, Van Huy Pham. Inverse group 1-median problem on trees. Journal of Industrial & Management Optimization, 2021, 17 (1) : 221-232. doi: 10.3934/jimo.2019108

[14]

Evelyn Sander, Thomas Wanner. Equilibrium validation in models for pattern formation based on Sobolev embeddings. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 603-632. doi: 10.3934/dcdsb.2020260

[15]

Hai Q. Dinh, Bac T. Nguyen, Paravee Maneejuk. Constacyclic codes of length $ 8p^s $ over $ \mathbb F_{p^m} + u\mathbb F_{p^m} $. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020123

[16]

Saadoun Mahmoudi, Karim Samei. Codes over $ \frak m $-adic completion rings. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020122

[17]

Min Xi, Wenyu Sun, Jun Chen. Survey of derivative-free optimization. Numerical Algebra, Control & Optimization, 2020, 10 (4) : 537-555. doi: 10.3934/naco.2020050

[18]

Arthur Fleig, Lars Grüne. Strict dissipativity analysis for classes of optimal control problems involving probability density functions. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020053

[19]

Jérôme Lohéac, Chaouki N. E. Boultifat, Philippe Chevrel, Mohamed Yagoubi. Exact noise cancellation for 1d-acoustic propagation systems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020055

[20]

Sabira El Khalfaoui, Gábor P. Nagy. On the dimension of the subfield subcodes of 1-point Hermitian codes. Advances in Mathematics of Communications, 2021, 15 (2) : 219-226. doi: 10.3934/amc.2020054

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (219)
  • HTML views (1425)
  • Cited by (2)

Other articles
by authors

[Back to Top]