In this paper, we study an extended trust region subproblem (eTRS) in which the unit ball intersects with $m$ linear inequality constraints. In the literature, Burer et al. proved that an SOC-SDP relaxation (SOCSDPr) of eTRS is exact, under the condition that the nonredundant constraints do not intersect each other in the unit ball. Furthermore, Yuan et al. gave a necessary and sufficient condition for the corresponding SOCSDPr to be a tight relaxation when $m = 2$. However, there lacks a recovering algorithm to generate an optimal solution of eTRS from an optimal solution $X^*$ of SOCSDPr when rank $(X^*)≥ 2$ and $m≥ 3$. This paper provides such a recovering algorithm to complement those known works.
Citation: |
[1] |
A. Ben-Tal, L. E. Ghaoui and A. Nemirovski, Robust Optimization, Princeton Series in Applied Mathematics, 2009
doi: 10.1515/9781400831050.![]() ![]() ![]() |
[2] |
D. Bertsimas, D. Brown and C. Caramanis, Theory and applications of robust optimization, SIAM Review, 53 (2011), 464-501.
doi: 10.1137/080734510.![]() ![]() ![]() |
[3] |
D. Bertsimas, D. Pachamanova and M. Sim, Robust linear optimization under general norms, Operations Research Letters, 32 (2004), 510-516.
doi: 10.1016/j.orl.2003.12.007.![]() ![]() ![]() |
[4] |
S. Burer, A gentle, geometric introduction to copositive optimization, Mathematical Progamming, 151 (2015), 89-116.
doi: 10.1007/s10107-015-0888-z.![]() ![]() ![]() |
[5] |
S. Burer and K. M. Anstreicher, Second-order cone constraints for extended trust-region problems, SIAM Journal on Optimization, 23 (2013), 432-451.
doi: 10.1137/110826862.![]() ![]() ![]() |
[6] |
S. Burer and B. Yang, The trust region subproblem with non-intersecting linear constraints, Mathematical Progamming, 149 (2015), 253-264.
doi: 10.1007/s10107-014-0749-1.![]() ![]() ![]() |
[7] |
A. R. Conn, N. I. M. Gould and P. L. Toint, Trust-Region Methods, MPS-SIAM Series in Optimization, SIAM, Philadelphia, PA, 2000.
doi: 10.1137/1.9780898719857.![]() ![]() ![]() |
[8] |
W. Gander, G. H. Golub and U. Von Matt, A constrained eigenvalue problem, Linear Algebra and its Applications, 114/115 (1989), 815-839.
doi: 10.1016/0024-3795(89)90494-1.![]() ![]() ![]() |
[9] |
G. H. Golub and U. Von Matt, Quadratically constrained least squares and quadratic problems, Numerische Mathematik, 59 (1991), 561-580.
doi: 10.1007/BF01385796.![]() ![]() ![]() |
[10] |
V. Jeyakumar and G. Li, A robust von-Neumann minimax theorem for zero-sum games under bounded payoff uncertainty, Operations Research Letters, 39 (2011), 109-114.
doi: 10.1016/j.orl.2011.02.007.![]() ![]() ![]() |
[11] |
V. Jeyakumar and G. Li, Strong duality in robust convex programming: Complete characterizations, SIAM Journal on Optimization, 20 (2010), 3384-3407.
doi: 10.1137/100791841.![]() ![]() ![]() |
[12] |
J. J. More, Generalizations of the trust region subproblem, Optimization Methods and Software, 2 (2008), 189-209.
doi: 10.1080/10556789308805542.![]() ![]() |
[13] |
P. Pardalos and H. Romeijn, Handbook in Global Optimization, vol. 2. Kluwer Academic Publishers, Dordrecht, 2002.
doi: 10.1007/978-1-4757-5362-2.![]() ![]() ![]() |
[14] |
M. J. D. Powell and Y. Yuan, A trust region algorithm for equality constrained optimization, Mathematical Programming, 49 (1990), 189-211.
doi: 10.1007/BF01588787.![]() ![]() ![]() |
[15] |
R. T. Rockafellar, Convex Analysis, Princeton University Press, 1970.
![]() ![]() |
[16] |
R. J. Stern and H. Wolkowicz, Indefinite trust region subproblems and nonsymmetric eigenvalue perturbations, SIAM Journal on Optimization, 5 (1995), 286-313.
doi: 10.1137/0805016.![]() ![]() ![]() |
[17] |
J. F. Sturm and S. Zhang, On cones of nonnegative quadratic functions, Mathematics of Operations Research, 28 (2003), 246-267.
doi: 10.1287/moor.28.2.246.14485.![]() ![]() ![]() |
[18] |
Y. Ye and S. Zhang, New results on quadratic minimization, SIAM Journal on Optimization, 14 (2003), 245-267.
doi: 10.1137/S105262340139001X.![]() ![]() ![]() |
[19] |
J. H. Yuan, M. L. Wang, W. B. Ai and T. P. Shuai, A necessary and sufficient condition of convexity for SOC reformulation of trust-region subproblem with two intersecting cuts, Science China Mathematics, 59 (2016), 1127-1140.
doi: 10.1007/s11425-016-5130-9.![]() ![]() ![]() |
[20] |
Y. Yuan, On a subproblem of trust region algorithms for constrained optimization, Mathematical Programming, 47 (1990), 53-63.
doi: 10.1007/BF01580852.![]() ![]() ![]() |