[1]
|
M. Al-Baali, Y. Narushima and H. Yabe, A family of three-term conjugate gradient methods with sufficient descent property for unconstrained optimization, Computational Optimization and Applications, 60 (2015), 89-110.
doi: 10.1007/s10589-014-9662-z.
|
[2]
|
I. Bongart, A. R. Conn, N. I. M. Gould and P. L. Toint, CUTE: constrained and unconstrained testing environment, ACM Transactions on Mathematical Software, 21 (1995), 123-160.
doi: 10.1145/200979.201043.
|
[3]
|
Z. Chen and W. Cheng, Spectral-scaling quasi-Newton methods with updates from the one parameter of the Broyden family, Journal of Computational and Applied Mathematics, 248 (2013), 88-98.
doi: 10.1016/j.cam.2013.01.012.
|
[4]
|
W. Y. Cheng and D. H. Li, Spectral scaling BFGS method, Journal of Optimization Theory and Applications, 146 (2010), 305-319.
doi: 10.1007/s10957-010-9652-y.
|
[5]
|
Y. H. Dai and C. X. Kou, A nonlinear conjugate gradient algorithm with an optimal property and an improved Wolfe line search, SIAM Journal on Optimization, 23 (2013), 296-320.
doi: 10.1137/100813026.
|
[6]
|
Y. H. Dai and L. Z. Liao, New conjugacy conditions and related nonlinear conjugate gradient methods, Applied Mathematics and Optimization, 43 (2001), 87-101.
doi: 10.1007/s002450010019.
|
[7]
|
E. D. Dolan and J. J. Moré, Benchmarking optimization software with performance profiles, Mathematical Programming, 91 (2002), 201-213.
doi: 10.1007/s101070100263.
|
[8]
|
J. A. Ford and I. A. Moghrabi, Multi-step quasi-Newton methods for optimization, Journal of Computational and Applied Mathematics, 50 (1994), 305-323.
doi: 10.1016/0377-0427(94)90309-3.
|
[9]
|
J. C. Gilbert and J. Nocedal, Global convergence properties of conjugate gradient methods for optimization, SIAM Journal on Optimization, 2 (1992), 21-42.
doi: 10.1137/0802003.
|
[10]
|
N.I.M Gould, D. Orban and P.L. Toint, CUTEr and SifDec: A constrained and unconstrained testing environment, revisited, ACM Transactions on Mathematical Software, 29 (2003), 373-394.
doi: 10.1145/962437.962439.
|
[11]
|
W. W. Hager, Hager's web page: https://people.clas.ufl.edu/hager/.
|
[12]
|
W. W. Hager and H. Zhang, A new conjugate gradient method with guaranteed descent and an efficient line search, SIAM Journal on Optimization, 16 (2005), 170-192.
doi: 10.1137/030601880.
|
[13]
|
W. W. Hager and H. Zhang, A survey of nonlinear conjugate gradient method, Pacific Journal of Optimization, 2 (2006), 35-58.
|
[14]
|
W. W. Hager and H. Zhang, Algorithm 851: CG_DESCENT, a conjugate gradient method with guaranteed descent, ACM Transactions on Mathematical Software, 32 (2006), 113-137.
doi: 10.1145/1132973.1132979.
|
[15]
|
M. R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear systems, Journal of Research of the National Bureau of Standards, 49 (1952), 409-436.
doi: 10.6028/jres.049.044.
|
[16]
|
S. Hoshino, A formulation of variable metric methods, IMA Journal of Applied Mathematics, 10 (1972), 394-403.
doi: 10.1093/imamat/10.3.394.
|
[17]
|
C. X. Kou and Y. H. Dai, A modified self-scaling memoryless Broyden-Fletcher-Goldfarb-Shanno method for unconstrained optimization, Journal of Optimization Theory and Applications, 165 (2015), 209-224.
doi: 10.1007/s10957-014-0528-4.
|
[18]
|
D. H. Li and M. Fukushima, A modified BFGS method and its global convergence in nonconvex minimization, Journal of Computational and Applied Mathematics, 129 (2001), 15-35.
doi: 10.1016/S0377-0427(00)00540-9.
|
[19]
|
F. Modarres, M. A. Hassan and W. J. Leong, Memoryless modified symmetric rank-one method for large-scale unconstrained optimization, American Journal of Applied Sciences, 6 (2009), 2054-2059.
|
[20]
|
A.U. Moyi and W.J. Leong, A sufficient descent three-term conjugate gradient method via symmetric rank-one update for large-scale optimization, Optimization, 65 (2016), 121-143.
doi: 10.1080/02331934.2014.994625.
|
[21]
|
S. Nakayama, Y. Narushima and H. Yabe, A memoryless symmetric rank-one method with sufficient descent property for unconstrained optimization, Journal of the Operations Research Society of Japan, 61 (2018), 53-70.
doi: 10.15807/jorsj.61.53.
|
[22]
|
Y. Narushima and H. Yabe, A survey of sufficient descent conjugate gradient methods for unconstrained optimization, SUT Journal of Mathematics, 50 (2014), 167-203.
|
[23]
|
Y. Narushima, H. Yabe and J. A. Ford, A three-term conjugate gradient method with sufficient descent property for unconstrained optimization, SIAM Journal on Optimization, 21 (2011), 212-230.
doi: 10.1137/080743573.
|
[24]
|
J. Nocedal and S. J. Wright,
Numerical Optimization, 2nd edition, Springer, 2006.
|
[25]
|
S. S. Oren, Self-scaling variable metric (SSVM) algorithms, Part Ⅱ: Implementation and experiments, Management Science, 20 (1974), 863-874.
doi: 10.1287/mnsc.20.5.863.
|
[26]
|
S. S. Oren and D. G. Luenberger, Self-scaling variable metric (SSVM) algorithms, Part Ⅰ: Criteria and sufficient conditions for scaling a class of algorithms, Management Science, 20 (1974), 845-862.
doi: 10.1287/mnsc.20.5.845.
|
[27]
|
D. F. Shanno, Conjugate gradient methods with inexact searches, Mathematics of Operations Research, 3 (1978), 244-256.
doi: 10.1287/moor.3.3.244.
|
[28]
|
K. Sugiki, Y. Narushima and H. Yabe, Globally convergent three-term conjugate gradient methods that use secant condition and generate descent search directions for unconstrained optimization, Journal of Optimization Theory and Applications, 153 (2012), 733-757.
doi: 10.1007/s10957-011-9960-x.
|
[29]
|
L. Sun, An approach to scaling symmetric rank-one update, Pacific Journal of Optimization, 2 (2006), 105-118.
|
[30]
|
W. Sun and Y. Yuan,
Optimization Theory and Methods: Nonlinear Programming, Springer, 2006.
|
[31]
|
Z. Wei, G. Li and L. Qi, New quasi-Newton methods for unconstrained optimization problems, Applied Mathematics and Computation, 175 (2006), 1156-1188.
doi: 10.1016/j.amc.2005.08.027.
|
[32]
|
J. Z. Zhang, N. Y. Deng and L. H. Chen, New quasi-Newton equation and related methods for unconstrained optimization, Journal of Optimization Theory and Applications, 102 (1999), 147-167.
doi: 10.1023/A:1021898630001.
|
[33]
|
L. Zhang, W. Zhou and D. H. Li, A descent modified Polak-Ribière-Polyak conjugate gradient method and its global convergence, IMA Journal of Numerical Analysis, 26 (2006), 629-640.
doi: 10.1093/imanum/drl016.
|
[34]
|
Y. Zhang and R. P. Tewarson, Quasi-Newton algorithms with updates from the preconvex part of Broyden's family, IMA Journal of Numerical Analysis, 8 (1988), 487-509.
doi: 10.1093/imanum/8.4.487.
|