• Previous Article
    Capital-constrained supply chain with multiple decision attributes: Decision optimization and coordination analysis
  • JIMO Home
  • This Issue
  • Next Article
    Homotopy method for solving generalized Nash equilibrium problem with equality and inequality constraints
October  2019, 15(4): 1809-1830. doi: 10.3934/jimo.2018124

Uncertain portfolio selection with mental accounts and background risk

1. 

Business School, Central University of Finance and Economics, Beijing 100081, China

2. 

Guanghua School of Management, Peking University, Harvest Fund Management Co., Ltd, Beijing 100871, China

* Corresponding author: Hao Di

Received  July 2017 Revised  May 2018 Published  August 2018

Fund Project: The second author is supported by CPSF (2017M611513).

In real life, investors face background risk which may affect their portfolio selection decision. In addition, since the security market is too complex, there are situations where the future security returns cannot be reflected by historical data and have to be given by experts' estimations according to their knowledge and judgement. This paper discusses a portfolio selection problem with background risk in such an uncertain environment. In the paper, in order to reflect different attitudes towards risk that vary by goal in one portfolio investment, we apply mental accounts to the investment. Using uncertainty theory, we propose an uncertain portfolio selection model with mental accounts and background risk and provide the determinate form of the model. Moreover, we discuss the shape and location of efficient frontier of the subportfolios with background risk and without background risk. Further, we present the conditions under which the optimal aggregate portfolio is on the efficient frontier when return rates of security and background asset are all normal uncertain variables. Finally, a real portfolio selection example is given as an illustration.

Citation: Li Xue, Hao Di. Uncertain portfolio selection with mental accounts and background risk. Journal of Industrial & Management Optimization, 2019, 15 (4) : 1809-1830. doi: 10.3934/jimo.2018124
References:
[1]

G. J. Alexander and A. M. Baptista, Portfolio selection with mental accounts and delegation, Journal of Banking and Finance, 36 (2011), 2637-2656.   Google Scholar

[2]

S. AramonteM. G. Rodriguez and J. Wu, Dynamic factor Value-at-Risk for large heteroskedastic portfolios, Journal of Banking and Finance, 37 (2013), 4299-4309.   Google Scholar

[3]

A. M. Baptista, Portfolio selection with mental accounts and background risk, Journal of Banking and Finance, 36 (2012), 968-980.  doi: 10.1016/j.jbankfin.2011.10.015.  Google Scholar

[4]

R. Castellano and R. Cerqueti, Mean-variance portfolio selection in presence of infrequently traded stocks, European Journal of Operational Research, 234 (2014), 442-449.  doi: 10.1016/j.ejor.2013.04.024.  Google Scholar

[5]

S. DasH. MarkowitzJ. Scheid and M. Statman, Portfolio optimization with mental accounts, Journal of Financial and Quantitative Analysis, 45 (2010), 311-334.  doi: 10.1017/S0022109010000141.  Google Scholar

[6]

S. DasH. MarkowitzJ. Scheid and M. Statman, Portfolios for investors who want to reach their goals while staying on the mean-variance efficient frontier, Journal of Wealth Management, (2011), 1-7.   Google Scholar

[7]

C. Gollier, The Economics of Risk and Time, MIT Press, Cambridge, 2001. Google Scholar

[8]

X. X. Huang, Portfolio Analysis: From Probabilistic to Credibilistic and Uncertain Approaches, Springer-Verlag, Berlin, 2010. doi: 10.1007/978-3-642-11214-0.  Google Scholar

[9]

X. X. Huang, Mean-risk model for uncertain portfolio selection, Fuzzy Optimization and Decision Making, 10 (2011), 71-89.  doi: 10.1007/s10700-010-9094-x.  Google Scholar

[10]

X. X. Huang, A risk index model for portfolio selection with returns subject to experts' evaluations, Fuzzy Optimization and Decision Making, 11 (2012), 451-463.  doi: 10.1007/s10700-012-9125-x.  Google Scholar

[11]

X. X. Huang, Mean-variance models for portfolio selection subject to experts' estimations, Expert Systems with Applications, 39 (2012), 5887-5893.  doi: 10.1016/j.eswa.2011.11.119.  Google Scholar

[12]

X. X. Huang and H. Di, Uncertain portfolio selection with background risk, Applied Mathematics and Computation, 276 (2016), 284-296.  doi: 10.1016/j.amc.2015.12.018.  Google Scholar

[13]

H. H. Huang and C. P. Wang, Portfolio selection and portfolio frontier with background risk, North American Journal of Economics and Finance, 26 (2013), 177-196.  doi: 10.1016/j.najef.2013.09.001.  Google Scholar

[14]

X. X. Huang and H. Y. Ying, Risk index based models for portfolio adjusting problem with returns subject to experts' evaluations, Economic Modelling, 11 (2012), 451-463.  doi: 10.1007/s10700-012-9125-x.  Google Scholar

[15]

C. H. JiangY. K. Ma and Y.B An, An analysis of portfolio selection with background risk, Journal of Banking and Finance, 34 (2010), 3055-3060.   Google Scholar

[16]

D. Kahneman and A. Tversky, Prospect theory: An analysis of decision under risk, Econometrica, 47 (1979), 263-292.   Google Scholar

[17]

B. D. Liu, Uncertainty Theory, 2nd edition, Springer-Verlag, Berlin, 2007. doi: 10.1007/978-3-540-39987-2.  Google Scholar

[18]

B. D. Liu, Why is there a need for uncertainty theory?, Journal of Uncertain Systems, 6 (2012), 3-10.   Google Scholar

[19]

B. D. Liu, Uncertainty Theory, 4nd edition, Springer-Verlag, Berlin, 2014. doi: 10.1007/978-3-540-39987-2.  Google Scholar

[20]

H. Markowitz, Portfolio selection, Journal of Finance, 7 (1952), 77-91.   Google Scholar

[21]

H. Markowitz, Portfolio Selection: Efficient Diversification of Investments, Wiley, New York, 1959.  Google Scholar

[22]

F. Menoncin, Optimal portfolio and background risk: an exact and an approximated solution, Insurance Mathematics and Economics, 31 (2002), 249-265.  doi: 10.1016/S0167-6687(02)00154-3.  Google Scholar

[23]

H. S. Rosen and S. Wu, Portfolio choice and health status, Journal of Financial Economics, 72 (2004), 457-484.   Google Scholar

[24]

R. H. Thaler, Mental accounting and consumer choice, Marketing Science, 4 (1985), 199-214.   Google Scholar

[25]

L. M. Viceira, Optimal portfolio choice for long-horizon investors with nontradable labor income, Journal of Finance, 56 (2001), 433-470.   Google Scholar

show all references

References:
[1]

G. J. Alexander and A. M. Baptista, Portfolio selection with mental accounts and delegation, Journal of Banking and Finance, 36 (2011), 2637-2656.   Google Scholar

[2]

S. AramonteM. G. Rodriguez and J. Wu, Dynamic factor Value-at-Risk for large heteroskedastic portfolios, Journal of Banking and Finance, 37 (2013), 4299-4309.   Google Scholar

[3]

A. M. Baptista, Portfolio selection with mental accounts and background risk, Journal of Banking and Finance, 36 (2012), 968-980.  doi: 10.1016/j.jbankfin.2011.10.015.  Google Scholar

[4]

R. Castellano and R. Cerqueti, Mean-variance portfolio selection in presence of infrequently traded stocks, European Journal of Operational Research, 234 (2014), 442-449.  doi: 10.1016/j.ejor.2013.04.024.  Google Scholar

[5]

S. DasH. MarkowitzJ. Scheid and M. Statman, Portfolio optimization with mental accounts, Journal of Financial and Quantitative Analysis, 45 (2010), 311-334.  doi: 10.1017/S0022109010000141.  Google Scholar

[6]

S. DasH. MarkowitzJ. Scheid and M. Statman, Portfolios for investors who want to reach their goals while staying on the mean-variance efficient frontier, Journal of Wealth Management, (2011), 1-7.   Google Scholar

[7]

C. Gollier, The Economics of Risk and Time, MIT Press, Cambridge, 2001. Google Scholar

[8]

X. X. Huang, Portfolio Analysis: From Probabilistic to Credibilistic and Uncertain Approaches, Springer-Verlag, Berlin, 2010. doi: 10.1007/978-3-642-11214-0.  Google Scholar

[9]

X. X. Huang, Mean-risk model for uncertain portfolio selection, Fuzzy Optimization and Decision Making, 10 (2011), 71-89.  doi: 10.1007/s10700-010-9094-x.  Google Scholar

[10]

X. X. Huang, A risk index model for portfolio selection with returns subject to experts' evaluations, Fuzzy Optimization and Decision Making, 11 (2012), 451-463.  doi: 10.1007/s10700-012-9125-x.  Google Scholar

[11]

X. X. Huang, Mean-variance models for portfolio selection subject to experts' estimations, Expert Systems with Applications, 39 (2012), 5887-5893.  doi: 10.1016/j.eswa.2011.11.119.  Google Scholar

[12]

X. X. Huang and H. Di, Uncertain portfolio selection with background risk, Applied Mathematics and Computation, 276 (2016), 284-296.  doi: 10.1016/j.amc.2015.12.018.  Google Scholar

[13]

H. H. Huang and C. P. Wang, Portfolio selection and portfolio frontier with background risk, North American Journal of Economics and Finance, 26 (2013), 177-196.  doi: 10.1016/j.najef.2013.09.001.  Google Scholar

[14]

X. X. Huang and H. Y. Ying, Risk index based models for portfolio adjusting problem with returns subject to experts' evaluations, Economic Modelling, 11 (2012), 451-463.  doi: 10.1007/s10700-012-9125-x.  Google Scholar

[15]

C. H. JiangY. K. Ma and Y.B An, An analysis of portfolio selection with background risk, Journal of Banking and Finance, 34 (2010), 3055-3060.   Google Scholar

[16]

D. Kahneman and A. Tversky, Prospect theory: An analysis of decision under risk, Econometrica, 47 (1979), 263-292.   Google Scholar

[17]

B. D. Liu, Uncertainty Theory, 2nd edition, Springer-Verlag, Berlin, 2007. doi: 10.1007/978-3-540-39987-2.  Google Scholar

[18]

B. D. Liu, Why is there a need for uncertainty theory?, Journal of Uncertain Systems, 6 (2012), 3-10.   Google Scholar

[19]

B. D. Liu, Uncertainty Theory, 4nd edition, Springer-Verlag, Berlin, 2014. doi: 10.1007/978-3-540-39987-2.  Google Scholar

[20]

H. Markowitz, Portfolio selection, Journal of Finance, 7 (1952), 77-91.   Google Scholar

[21]

H. Markowitz, Portfolio Selection: Efficient Diversification of Investments, Wiley, New York, 1959.  Google Scholar

[22]

F. Menoncin, Optimal portfolio and background risk: an exact and an approximated solution, Insurance Mathematics and Economics, 31 (2002), 249-265.  doi: 10.1016/S0167-6687(02)00154-3.  Google Scholar

[23]

H. S. Rosen and S. Wu, Portfolio choice and health status, Journal of Financial Economics, 72 (2004), 457-484.   Google Scholar

[24]

R. H. Thaler, Mental accounting and consumer choice, Marketing Science, 4 (1985), 199-214.   Google Scholar

[25]

L. M. Viceira, Optimal portfolio choice for long-horizon investors with nontradable labor income, Journal of Finance, 56 (2001), 433-470.   Google Scholar

Figure 1.  Efficient frontier of optimal subportfolio
Figure 2.  Efficient frontier of optimal subportfolios with and without background risk when $0<\alpha<0.5$
Figure 3.  Efficient frontier of aggregate portfolio and portfolio without mental accounts
Figure 4.  Efficient frontier of optimal subportfolios and aggregate portfolio
Table 1.  Twenty candidate securities from the Shanghai Stock Exchange
Security $i$ Name Code Security $i$ Name Code
1 Shanghaijichang 600009 11 Shoukaigufen 600376
2 Nanjingyinhang 601009 12 Zhejianglongsheng 600352
3 Bohuizhiye 600966 13 Chunqiuhangkong 601021
4 Huaxiayinhang 600015 14 Beifangxitu 600111
5 Zhaoshangyinhang 600035 15 Sananguangdian 600703
6 Zhongguoshihua 600028 16 Zhonghangziben 600705
7 Zhongguoliantong 600050 17 Anxinxintuo 600816
8 Tongfanggufen 600100 18 Pengboshi 600804
9 Nanshanlvye 600219 19 Zhongchuanfangwu 600685
10 Guangdayinhang 601818 20 Fenghuotongxin 600498
Security $i$ Name Code Security $i$ Name Code
1 Shanghaijichang 600009 11 Shoukaigufen 600376
2 Nanjingyinhang 601009 12 Zhejianglongsheng 600352
3 Bohuizhiye 600966 13 Chunqiuhangkong 601021
4 Huaxiayinhang 600015 14 Beifangxitu 600111
5 Zhaoshangyinhang 600035 15 Sananguangdian 600703
6 Zhongguoshihua 600028 16 Zhonghangziben 600705
7 Zhongguoliantong 600050 17 Anxinxintuo 600816
8 Tongfanggufen 600100 18 Pengboshi 600804
9 Nanshanlvye 600219 19 Zhongchuanfangwu 600685
10 Guangdayinhang 601818 20 Fenghuotongxin 600498
Table 2.  Uncertain return rates of 20 securities
Security $i$ $\xi_i$ Security $i$ $\xi_i$
1 $N(0.0720,0.1028)$ 11 $N(0.2360,0.4620)$
2 $N(0.0608,0.0700)$ 12 $N(0.2120,0.4580)$
3 $N(0.1498,0.7890)$ 13 $N(0.2008,0.5930)$
4 $N(0.1560,0.1800)$ 14 $N(0.2606,0.3970)$
5 $N(0.0780,0.1100)$ 15 $N(0.2937,0.5132)$
6 $N(0.1256,0.1890)$ 16 $N(0.2682,0.3140)$
7 $N(0.1396,0.3080)$ 17 $N(0.2926,0.4870)$
8 $N(0.1602,0.2340)$ 18 $N(0.1946,0.2780)$
9 $N(0.0970,0.1590)$ 19 $N(0.2210,0.3150)$
10 $N(0.0868,0.0952)$ 20 $N(0.2460,0.4050)$
Security $i$ $\xi_i$ Security $i$ $\xi_i$
1 $N(0.0720,0.1028)$ 11 $N(0.2360,0.4620)$
2 $N(0.0608,0.0700)$ 12 $N(0.2120,0.4580)$
3 $N(0.1498,0.7890)$ 13 $N(0.2008,0.5930)$
4 $N(0.1560,0.1800)$ 14 $N(0.2606,0.3970)$
5 $N(0.0780,0.1100)$ 15 $N(0.2937,0.5132)$
6 $N(0.1256,0.1890)$ 16 $N(0.2682,0.3140)$
7 $N(0.1396,0.3080)$ 17 $N(0.2926,0.4870)$
8 $N(0.1602,0.2340)$ 18 $N(0.1946,0.2780)$
9 $N(0.0970,0.1590)$ 19 $N(0.2210,0.3150)$
10 $N(0.0868,0.0952)$ 20 $N(0.2460,0.4050)$
Table 3.  Optimal subportfolios and aggregate portfolio with background risk
Retirement Leisure Aggregate
$2$ 0.9888 0.3891 0.6889
$4$ 0.0112 0.6109 0.3111
Expected return 6.19% 11.90% 9.045%
Retirement Leisure Aggregate
$2$ 0.9888 0.3891 0.6889
$4$ 0.0112 0.6109 0.3111
Expected return 6.19% 11.90% 9.045%
Table 4.  Optimal subportfolios and aggregate portfolio without background risk
Retirement Leisure Aggregate
$2$ 0.7941 0.1944 0.4943
$4$ 0.2059 0.8056 0.5057
Expected return 8.04% 13.75% 10.895%
Retirement Leisure Aggregate
$2$ 0.7941 0.1944 0.4943
$4$ 0.2059 0.8056 0.5057
Expected return 8.04% 13.75% 10.895%
Table 5.  Optimal subportfolios and aggregate portfolio with background risk
Retirement Leisure Aggregate
$2$ 0.9888 0.0000 0.4926
$4$ 0.0112 0.5484 0.4144
$16$ 0.0000 0.4516 0.0930
Expected return 6.19% 20.67% 13.43%
Retirement Leisure Aggregate
$2$ 0.9888 0.0000 0.4926
$4$ 0.0112 0.5484 0.4144
$16$ 0.0000 0.4516 0.0930
Expected return 6.19% 20.67% 13.43%
Table 6.  Loss of efficiency when VaRU is misspecified
$MIS$ -5% -10% -15% -20% -25% -30%
$\frac{E'-E_2}{E_1}$ -4.61% -11.29% -18.89% -27.59% -37.67% -49.49%
$MIS$ -5% -10% -15% -20% -25% -30%
$\frac{E'-E_2}{E_1}$ -4.61% -11.29% -18.89% -27.59% -37.67% -49.49%
Table 7.  Random return rates of 20 securities
Security $i$ $\eta_i$ Security $i$ $\eta_i$
1 $\textrm{N}(0.0796,0.1460)$ 11 $\textrm{N}(0.2000,0.3240)$
2 $\textrm{N}(0.0676,0.1440)$ 12 $\textrm{N}(0.2270,0.2360)$
3 $\textrm{N}(0.2730,0.7580)$ 13 $\textrm{N}(0.2860,0.5470)$
4 $\textrm{N}(0.1560,0.1720)$ 14 $\textrm{N}(0.3020,0.3150)$
5 $\textrm{N}(0.1610,0.1400)$ 15 $\textrm{N}(0.4140,0.3570)$
6 $\textrm{N}(0.0819,0.1400)$ 16 $\textrm{N}(0.3250,0.4260)$
7 $\textrm{N}(0.1250,0.1670)$ 17 $\textrm{N}(0.3050,0.3000)$
8 $\textrm{N}(0.1570,0.2810)$ 18 $\textrm{N}(0.3530,0.3000)$
9 $\textrm{N}(0.0830,0.2450)$ 19 $\textrm{N}(0.2380,0.3090)$
10 $\textrm{N}(0.0498,0.0965)$ 20 $\textrm{N}(0.1990,0.2670)$
Security $i$ $\eta_i$ Security $i$ $\eta_i$
1 $\textrm{N}(0.0796,0.1460)$ 11 $\textrm{N}(0.2000,0.3240)$
2 $\textrm{N}(0.0676,0.1440)$ 12 $\textrm{N}(0.2270,0.2360)$
3 $\textrm{N}(0.2730,0.7580)$ 13 $\textrm{N}(0.2860,0.5470)$
4 $\textrm{N}(0.1560,0.1720)$ 14 $\textrm{N}(0.3020,0.3150)$
5 $\textrm{N}(0.1610,0.1400)$ 15 $\textrm{N}(0.4140,0.3570)$
6 $\textrm{N}(0.0819,0.1400)$ 16 $\textrm{N}(0.3250,0.4260)$
7 $\textrm{N}(0.1250,0.1670)$ 17 $\textrm{N}(0.3050,0.3000)$
8 $\textrm{N}(0.1570,0.2810)$ 18 $\textrm{N}(0.3530,0.3000)$
9 $\textrm{N}(0.0830,0.2450)$ 19 $\textrm{N}(0.2380,0.3090)$
10 $\textrm{N}(0.0498,0.0965)$ 20 $\textrm{N}(0.1990,0.2670)$
Table 8.  Optimal subportfolios and aggregate portfolio with background risk when security return rates are random variables
Retirement Leisure Aggregate
$1$ 0.0939 0.1185 0.1062
$2$ 0.1979 0.1257 0.1618
$3$ 0.0000 0.0022 0.0011
$4$ 0.0000 0.0647 0.0324
$5$ 0.0000 0.0766 0.0383
$6$ 0.0748 0.1222 0.0985
$7$ 0.0000 0.0816 0.0408
$8$ 0.0000 0.0393 0.0197
$9$ 0.0359 0.0694 0.0527
$10$ 0.5976 0.2041 0.4009
$11$ 0.0000 0.0234 0.0117
$12$ 0.0000 0.0229 0.0114
$13$ 0.0000 0.0057 0.0029
$19$ 0.0000 0.0147 0.0074
$20$ 0.0000 0.0287 0.0144
Expected return 6.01% 10.42% 8.215%
Retirement Leisure Aggregate
$1$ 0.0939 0.1185 0.1062
$2$ 0.1979 0.1257 0.1618
$3$ 0.0000 0.0022 0.0011
$4$ 0.0000 0.0647 0.0324
$5$ 0.0000 0.0766 0.0383
$6$ 0.0748 0.1222 0.0985
$7$ 0.0000 0.0816 0.0408
$8$ 0.0000 0.0393 0.0197
$9$ 0.0359 0.0694 0.0527
$10$ 0.5976 0.2041 0.4009
$11$ 0.0000 0.0234 0.0117
$12$ 0.0000 0.0229 0.0114
$13$ 0.0000 0.0057 0.0029
$19$ 0.0000 0.0147 0.0074
$20$ 0.0000 0.0287 0.0144
Expected return 6.01% 10.42% 8.215%
[1]

Haixiang Yao, Ping Chen, Miao Zhang, Xun Li. Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020166

[2]

Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020054

[3]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[4]

Zonghong Cao, Jie Min. Selection and impact of decision mode of encroachment and retail service in a dual-channel supply chain. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020167

[5]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (243)
  • HTML views (1223)
  • Cited by (0)

Other articles
by authors

[Back to Top]